Skip to main content
Log in

Asymptotics of Chebyshev Polynomials. IV. Comments on the Complex Case

  • Published:
Journal d'Analyse Mathématique Aims and scope

Abstract

We make a number of comments on Chebyshev polynomials for general compact subsets of the complex plane. We focus on two aspects: asymptotics of the zeros and explicit Totik–Widom upper bounds on their norms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Alpan, Chebyshev polynomials on generalized Julia sets, Comput. Methods Funct. Theory 16 (2016), 387–393.

    Article  MathSciNet  MATH  Google Scholar 

  2. G. Alpan and A. Goncharov, Orthogonal polynomials on generalized Julia sets, Complex Anal. Oper. Theory 11 (2017), 1845–1864.

    Article  MathSciNet  MATH  Google Scholar 

  3. V. V. Andrievskii, On Chebyshev polynomials in the complex plane, Acta Math. Hungar. 152 (2017), 505–524.

    Article  MathSciNet  MATH  Google Scholar 

  4. V. Andrievskii, F. Nazarov, On the Totik–Widom property for a quasidisk, Constr. Approx. 50 (2019), 497–505.

    Article  MathSciNet  MATH  Google Scholar 

  5. D. Armitage and S. J. Gardiner, Classical Potential Theory, Springer, London, 2001.

    Book  MATH  Google Scholar 

  6. M. F. Barnsley, J. S. Geronimo and A. N. Harrington, Orthogonal polynomials associated with invariant measures on Julia sets, Bull. Amer. Math. Soc. 7 (1982), 381–384.

    Article  MathSciNet  MATH  Google Scholar 

  7. M. F. Barnsley, J. S. Geronimo and A. N. Harrington, Infinite-dimensional Jacobi matrices associated with Julia sets, Proc. Amer. Math. Soc. 88 (1983), 625–630.

    Article  MathSciNet  MATH  Google Scholar 

  8. J. Bernoulli, Curvatura Laminae Elasticae Ejus Identitas cum Curvatura Lintei a pondere inclusi fluidi expansi. Radii Circulorum Osculantium in terminis simplicissimis exhibiti; Una cum novis quibusdam Theorematis huc pertinentibus, Acta Eruditorum (1694), 262–276.

  9. D. Bessis, Orthogonal polynomials, Padé approximations, and Julia sets, in Orthogonal Polynomials, Kluwer, Dordrecht, 1990, pp. 55–97.

    Chapter  MATH  Google Scholar 

  10. H. P. Blatt, E. B. Saff and M. Simkani, Jentzsch–Szegő type theorems for the zeros of best approximants, J. London Math. Soc. 38 (1988), 307–316.

    Article  MathSciNet  MATH  Google Scholar 

  11. J. S. Christiansen, B. Simon and M. Zinchenko, Asymptotics of Chebyshev Polynomials, I. Subsets of ℝ, Invent. Math. 208 (2017), 217–245.

    Article  MathSciNet  MATH  Google Scholar 

  12. J. S. Christiansen, B. Simon, P. Yuditskii and M. Zinchenko, Asymptotics of Chebyshev polynomials, II. DCT subsets of ℝ, Duke Math. J. 168 (2019), 325–349.

    Article  MathSciNet  MATH  Google Scholar 

  13. J. S. Christiansen, B. Simon and M. Zinchenko, Asymptotics of Chebyshev polynomials, III. Sets saturating Szegő, Schiefermayr, and Totik–Widom bounds, in Analysis as a Tool in Mathematical Physics–in Memory of Boris Pavlov, Birkhäuser, Basel, 2020, pp. 231–246

    Chapter  Google Scholar 

  14. G. Faber, Über Tschebyscheffsche Polynome, J. Reine Angew. Math. 150 (1919), 79–106.

    MATH  Google Scholar 

  15. B. Fischer, Chebyshev polynomials for disjoint compact sets, Constr. Approx. 8 (1992), 309–329.

    Article  MathSciNet  MATH  Google Scholar 

  16. J. S. Geronimo and W. Van Assche, Orthogonal polynomials on several intervals via a polynomial mapping, Trans.Amer. Math.Soc. 308 (1988), 559–581.

    Article  MathSciNet  MATH  Google Scholar 

  17. L. Helms, Potential Theory, Springer, London, 2009.

    Book  MATH  Google Scholar 

  18. S. O. Kamo and P. A. Borodin, Chebyshev polynomials for Julia sets, Mosc. Univ. Math. Bull. 49 (1994), 44–45.

    MathSciNet  MATH  Google Scholar 

  19. N. S. Landkof, Foundations of Modern Potential Theory, Springer, New York–Heidelberg, 1972.

    Book  MATH  Google Scholar 

  20. A. Martínez Finkelshtein, Equilibrium problems of potential theory in the complex plane, in Orthogonal Polynomials and Special Functions, Springer, Berlin, 2006, pp. 79–117.

    Chapter  Google Scholar 

  21. H. N. Mhaskar and E. B. Saff, The distribution of zeros of asymptotically extremal polynomials, J. Approx. Theory 65 (1991), 279–300.

    Article  MathSciNet  MATH  Google Scholar 

  22. J. Milnor, Dynamics in One Complex Variable, Princeton University Press, Princeton, NJ, 2006.

    MATH  Google Scholar 

  23. M. Parreau, Théorème de Fatou et probleme de Dirichlet pour les lignes de Green de certaines surfaces de Riemann, Ann. Acad. Sci. Fenn. Ser. A. I, no. 250/25 (1958).

  24. F. Peherstorfer, On the asymptotic behaviour of functions of the second kind and Stieltjes polynomials and on the Gauss–Kronrod quadrature formulas, J. Approx. Theory 70 (1992), 156–190.

    Article  MathSciNet  MATH  Google Scholar 

  25. F. Peherstorfer, Orthogonal and extremal polynomials on several intervals, J. Comput. Appl. Math. 48 (1993), 187–205.

    Article  MathSciNet  MATH  Google Scholar 

  26. F. Peherstorfer, Deformation of minimal polynomials and approximation of several intervals by an inverse polynomial mapping, J. Approx. Theory 111 (2001), 180–195.

    Article  MathSciNet  MATH  Google Scholar 

  27. F. Peherstorfer, Inverse images ofpolynomial mappings and polynomials orthogonal on them, J. Comput. Appl. Math. 153 (2003), 371–385.

    Article  MathSciNet  MATH  Google Scholar 

  28. T. Ransford, Potential Theory in the Complex Plane, Cambridge University Press, Cambridge, 1995.

    Book  MATH  Google Scholar 

  29. E. B. Saff and N. Stylianopoulos, On the zeros ofasymptotically extremal polynomial sequences in the plane, J. Approx. Theory 191 (2015), 118–127.

    Article  MathSciNet  MATH  Google Scholar 

  30. E. B. Saff and V. Totik, Zeros of Chebyshev polynomials associated with a compact set in the plane, SIAM J. Math. Anal. 21 (1990), 799–802.

    Article  MathSciNet  MATH  Google Scholar 

  31. E. Saff and V. Totik, Logarithmic Potentials with External Fields, Springer-Verlag, Berlin, 1997.

    Book  MATH  Google Scholar 

  32. K. Schiefermayr, A lower bound for the minimum deviation of the Chebyshev polynomial on a compact real set, East J. Approx. 14 (2008), 223–233.

    MathSciNet  MATH  Google Scholar 

  33. B. Simon, Szegő’s Theorem and its Descendants: Spectral Theory for L2 Perturbations of Orthogonal Polynomials, Princeton University Press, Princeton, NJ, 2011.

    MATH  Google Scholar 

  34. B. Simon, A Comprehensive Course in Analysis, Part 1: Real Analysis, American Mathematical Society, Providence, RI, 2015.

    MATH  Google Scholar 

  35. B. Simon, A Comprehensive Course in Analysis, Part 2A: Basic Complex Analysis, American Mathematical Society, Providence, RI, 2015.

    MATH  Google Scholar 

  36. B. Simon, A Comprehensive Course in Analysis, Part 3: Harmonic Analysis, American Mathematical Society, Providence, RI, 2015.

    MATH  Google Scholar 

  37. B. Simon, A Comprehensive Course in Analysis, Part 4: Operator Theory, American Mathematical Society, Providence, RI, 2015.

    MATH  Google Scholar 

  38. G. Szegő, Bemerkungen zu einer Arbeit von Herrn M. Fekete: Über die Verteilung der Wurzeln bei gewissen algebraischen Gleichungen mit ganzzahligen Koeffizienten, Math. Z. 21 (1924), 203–208.

    Article  MathSciNet  MATH  Google Scholar 

  39. V. Totik, Asymptotics for Christoffel functions for general measures on the real line, J. Anal. Math. 81 (2000), 283–303.

    Article  MathSciNet  MATH  Google Scholar 

  40. V. Totik, Polynomial inverse images and polynomial inequalities, Acta Math. 187 (2001), 139–160.

    Article  MathSciNet  MATH  Google Scholar 

  41. V. Totik, Chebyshev constants and the inheritance problem, J. Approx. Theory 160 (2009), 187–201.

    Article  MathSciNet  MATH  Google Scholar 

  42. V. Totik, The polynomial inverse image method, in Approximation theory XIII: San Antonio 2010, Springer, New York, 2012, pp. 345–365.

    Chapter  Google Scholar 

  43. V. Totik, private communication.

  44. H. Widom, Polynomials associated with measures in the complex plane, J. Math. Mech. 16 (1967), 997–1013.

    MathSciNet  MATH  Google Scholar 

  45. H. Widom, Extremal polynomials associated with a system of curves in the complex plane, Adv. Math. 3 (1969), 127–232.

    Article  MathSciNet  MATH  Google Scholar 

  46. H. Widom, p sections of vector bundles over Riemann surfaces, Ann. of Math. (2) 94 (1971), 304–324.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barry Simon.

Additional information

Research supported in part by Project Grant DFF-4181-00502 from the Danish Council for Independent Research and by the Swedish Research Council (VR) Grant No. 2018-03500.

Research supported in part by NSF grants DMS-1265592 and DMS-1665526 and in part by Israeli BSF Grant No. 2014337.

Research supported in part by Simons Foundation grant CGM-581256.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Christiansen, J.S., Simon, B. & Zinchenko, M. Asymptotics of Chebyshev Polynomials. IV. Comments on the Complex Case. JAMA 141, 207–223 (2020). https://doi.org/10.1007/s11854-020-0120-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11854-020-0120-9

Navigation