Skip to main content
Log in

Transversality in the setting of hyperbolic and parabolic maps

  • Published:
Journal d'Analyse Mathématique Aims and scope

Abstract

In this paper we consider families of holomorphic maps defined on subsets of the complex plane, and show that the technique developed in [24] to treat unfolding of critical relations can also be used to deal with cases where the critical orbit converges to a hyperbolic attracting or a parabolic periodic orbit. As before this result applies to rather general families of maps, such as polynomial-like mappings, provided some lifting property holds. Our Main Theorem states that either the multiplier of a hyperbolic attracting periodic orbit depends univalently on the parameter and bifurcations at parabolic periodic points are generic, or one has persistency of periodic orbits with a fixed multiplier.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. L. Ahlfors, Lectures on Quasiconformal Mappings, American Mathematical Society, Providence, RI, 2006.

    Book  Google Scholar 

  2. K. Astala, T. Iwaniec and G. Martin, Elliptic partial differential equations and quasiconformal mappings in the plane, Princeton University Press, Princeton, NJ, 2009.

    Book  Google Scholar 

  3. M. Astorg, Summability condition and rigidity for finite type maps, arXiv: 1602.05172 [math.DS].

  4. A. Avila, M. Lyubich and W. de Melo, Regular or stochastic dynamics in real analytic families of unimodal maps, Invent. Math. 154 (2003), 451–550.

    Article  MathSciNet  Google Scholar 

  5. L. Bers and H. L. Royden, Holomorphic families of injections, Acta Math. 157 (1986), 259–286.

    Article  MathSciNet  Google Scholar 

  6. M. Brin and G. Stuck, Introduction to Dynamical Systems, Cambridge University Press, Cambridge, 2004.

    MATH  Google Scholar 

  7. X. Buff and A. Epstein, Bifurcation measure and postcritically finite rational maps, in Complex Dynamics, A. K. Peters, Wellesley, MA, 2009, pp. 491–512.

    Chapter  Google Scholar 

  8. L. Carleson and T. Gamelin, Complex Dynamics, Springer, New York, 1993.

    Book  Google Scholar 

  9. A. Douady, Topological entropy of unimodal maps: monotonicity for quadratic polynomials, in Real and Complex Dynamical Systems, Kluwer Academic, Dordrecht, 1995, pp. 65–87.

    Chapter  Google Scholar 

  10. A. Douady and J. H. Hubbard, Itération des polynômes quadratiques complexes, C. R. Acad. Sci. Paris Sér. I Math. 294 (1982), 123–126.

    MathSciNet  MATH  Google Scholar 

  11. A. Douady and J. H. Hubbard, Étude dynamique des polynômes complexes, Université de Paris-Sud, Departement de Mathématiques, Orsay, 1984

    MATH  Google Scholar 

  12. A. Douady and J. H. Hubbard, A proof of Thurston’s topological characterization of rational functions, Acta Math. 171 (1993), 263–297.

    Article  MathSciNet  Google Scholar 

  13. A. Epstein, Towers of finite type complex analytic maps, PhD thesis, City University of New York, 1993.

  14. A. Epstein, Infinitesmimal Thurston rigidity and the Fatou-Shishikura inequality, Stony Brook IMS preprint 19991.

  15. A. Epstein, Transversality in holomorphic dynamics, http://homepages.warwick.ac.uk/~mases/Transversality.pdf.

  16. A. Epstein, Transversality principles in holomorphic dynamics, https://icerm.brown.edu/materials/Slides/sp-s12-w1/Transversality_Principles_in_Holomorphic_Dynamics_]_Adam_Epstein,_University_of_Warwick.pdf

  17. C. Favre and T. Gauthier, Distribution of postcritically finite polynomials, Israel J. Math. 209 (2015), 235–292.

    Article  MathSciNet  Google Scholar 

  18. G. M. Levin, On the theory of iterations of polynomial families in the complex plane, Teor. Funktsiĭ Funktsional. Anal. i Prilozhen. 51 (1989), 94–106; English translation in J. Soviet Math. 52 (1990), 3512–3522.

    MATH  Google Scholar 

  19. G.M. Levin, Polynomial Julia sets and Pade’s approximations, in Proceedings of XIII Workshop on Operator’s Theory in Functional Spaces, Kyubishev State University, Kyubishev, 1988, pp. 113–114

    Google Scholar 

  20. G. Levin, On an analytic approach to the Fatou conjecture, Fund. Math. 171 (2002), 177–196.

    Article  MathSciNet  Google Scholar 

  21. G. Levin, On explicit connections between dynamical and parameter spaces, J. Anal. Math. 91 (2003), 297–327.

    Article  MathSciNet  Google Scholar 

  22. G. Levin, Multipliers of periodic orbits in spaces of rational maps, Ergodic Theory Dynam. Systems 31 (2011), 197–243.

    Article  MathSciNet  Google Scholar 

  23. G. Levin, Perturbations of weakly expanding critical orbits, in Frontiers in Complex Dynamics, Princeton University Press, Princeton, NJ, 2014, pp. 163–196

    Chapter  Google Scholar 

  24. G. Levin, W. Shen and S. van Strien, Monotonicity of entropy and positively oriented transversality for families of interval maps, arXiv:1611.10056 [math.DS].

  25. G. Levin, W. Shen and S. van Strien, Positive transversality via transfer operators and holomorphic motions with applications to monotonicity for interval maps, Nonlinearity 33 (2020), 3970–4012.

    Article  MathSciNet  Google Scholar 

  26. G. Levin, W. Shen and S. van Strien, Transversality for critical relations of families of rational maps: an elementary proof, in New Trends in One-dimensional Dynamics, Springer, Cham, 2019, pp. 201–220.

    Chapter  Google Scholar 

  27. G. Levin, M. L. Sodin and P. M. Yuditski, A Ruelle operator for a real Julia set, Comm. Math. Phys. 141 (1991), 119–132.

    Article  MathSciNet  Google Scholar 

  28. P. Makienko, Remarks on Ruelle operator and invariant line field problem. II. Ergodic Theory Dynam. Systems 25 (2005), 1561–1581.

    Article  MathSciNet  Google Scholar 

  29. C. T. McMullen and D. Sullivan, Quasiconformal homeomorphisms and dynamics III: the Teichmüller space of a holomorphic dynamical system, Adv. Math. 135 (1998), 351–395.

    Article  MathSciNet  Google Scholar 

  30. W. de Melo and S. van Strien, One-dimensional Dynamics, Springer, Berlin, 1993.

    Book  Google Scholar 

  31. J. Milnor, Periodic orbits, external rays and the Mandelbrot set, an expository account, Astérisque 261 (2000), 277–333.

    MathSciNet  MATH  Google Scholar 

  32. J. Milnor, Dynamics in One Complex Variable, Princeton University Press, Princeton, NJ, 2006.

    MATH  Google Scholar 

  33. J. Milnor, Hyperbolic components in Conformai Dynamics and Hyperbolic Geometry, American Mathematical Society, Providence, RI, 2012, pp. 183–232.

    Chapter  Google Scholar 

  34. J. Milnor and W. Thurston, On iterated maps of the interval, in Dynamical Systems, Springer, Berlin, 1988, pp. 465–563.

    Chapter  Google Scholar 

  35. M. Rees, Components of degree two hyperbolic rational maps, Invent. Math. 100 (1990) 357–382.

    Article  MathSciNet  Google Scholar 

  36. Z. Slodkowski, Holomorphic motions and polynomial hulls, Proc. Amer. Math. Soc. 111 (1991), 347–355.

    Article  MathSciNet  Google Scholar 

  37. S. van Strien, Misiurewicz maps unfold generically (even if they are critically non-finite), Fund. Math. 163 (2000), 39–54.

    Article  MathSciNet  Google Scholar 

  38. D. Sullivan, Unpublished.

  39. M. Tsujii, A note on Milnor and Thurston’s monotonicity theorem, in Geometry and Analysis in Dynamical Systems, World Scientific, River Edge, NJ, 1994, pp. 60–62.

    MATH  Google Scholar 

  40. M. Tsujii, A simple proofofmonotonicity ofentropy in the quadratic family, Ergodic Theory Dynam. Systems 20 (2000), 925–933.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Genadi Levin.

Additional information

Dedicated to Lawrence Zalcman

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Levin, G., Shen, W. & van Strien, S. Transversality in the setting of hyperbolic and parabolic maps. JAMA 141, 247–284 (2020). https://doi.org/10.1007/s11854-020-0130-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11854-020-0130-7

Navigation