Skip to main content

Advertisement

Log in

A wet climatic terrestrial carbonate record in the middle-upper Pleistocene, north Tunisia

  • Original Article
  • Published:
Facies Aims and scope Submit manuscript

Abstract

The middle-upper Pleistocene Borj Edouane unit records a singular spectrum of terrestrial carbonates in a shallow depression on Cretaceous rocks in north Tunisia. This study aims to decipher the depositional system and reveal the climatic and paleohydrological conditions of the carbonate facies deposition. They are grouped into two facies associations: (1) a calcrete–palustrine and (2) a composite microbialite-travertine, surrounded by a marginal alluvial association along the western and northern borders of the basin. The calcrete–palustrine association extends along the westernmost south–north strip of the basin, reflecting calcrete development on distal alluvial fan deposits and pedogenic modification (palustrine facies) of shallow fresh-water carbonates. The composite microbialite-travertine, extending along north–south strips in the middle and eastern areas of the basin, consists of microbialite, clastic microbialite–travertine, and travertine associations. Microbialites were developed in fluvio-lacustrine environments within the central strip and pass eastward into the travertines through the clastic microbialite–travertine association. The latter was deposited from currents and in shallow ponds along a bench next to the travertine-depositing springs, linked to a fault system in the eastern margin of the basin. The carbonate depositional system shows an asymmetrical distribution of facies that parallels the paleohydrological asymmetry along the basin. Water supply was restricted in the western part of the basin and abundant in its eastern areas linked to spring waters that kept stable lake levels in the basin center, favoring the genesis of microbialites. The presence of lacustrine carbonates in the studied area indicates higher water availability during the Middle-Late Pleistocene and that climate in North Africa was wetter than today.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Modified from Ghannem et al. 2019

Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

modified from Ghannem et al., 2019

Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Abouelmagd A, Sultan M, Milewski A, Kehew AE, Sturchio NC, Soliman F, Krishnamurthy RV, Elen Cutrim E (2017) Toward a better understanding of palaeoclimatic regimes that recharged the fossil aquifers in North Africa: inferences from stable isotope and remote sensing data. Palaeogeogr Palaeoclimatol Palaeoecol 329–330:137–149

    Google Scholar 

  • Alonso-Zarza AM (2003) Palaeoenvironmental significance of palustrine carbonates and calcretes in the geological record. Earth Sci Rev 60(3):261–298

    Google Scholar 

  • Alonso-Zarza AM, Tanner LH (eds) (2010) Carbonates in continental settings: facies, environments, and processes. Developments in Sedimentology 61, Elsevier, Amsterdam

    Google Scholar 

  • Arenas C, Cabrera L, Ramos E (2007) Sedimentology of tufa facies and continental microbialites from the Palaeogene of Mallorca Island (Spain). Sed Geol 19:1–27

    Google Scholar 

  • Arenas-Abad C, Vázquez-Urbez M, Pardo-Tirapu G, Sancho-Marcén C (2010) Fluvial and associated carbonate deposits. In: Alonso-Zarza AM, Tanner LH (eds) Carbonates in continental settings: facies, environments and processes. Developments in sedimentology 61. Elsevier, Amsterdam, pp 133–175

    Google Scholar 

  • Arenas C, Piñuela L, García-Ramos JC (2015) Climatic and tectonic controls on carbonate deposition in syn-rift siliciclastic fluvial systems: a case of microbialites and associated facies in the Late Jurassic. Sedimentology 62:1149–1183

    Google Scholar 

  • Armenteros I, Daley B (1998) Pedogenic modification and structure evolution in palustrine facies as exemplified by the Bembridge Limestone (Late Eocene) of the Isle of Wight, southern England. Sed Geol 119(3–4):275–295

    Google Scholar 

  • Armitage SJ, Drake NA, Stokes S, El-Hawat A, Salem M et al (2007) Multiple phases of North African humidity recorded in lacustrine sediments from the Fezzan Basin. Quat Geochronol 2:181–186

    Google Scholar 

  • Arp G (1995) Lacustrine bioherms, spring mounds and marginal carbonates of the Ries-Impact-Crater (Miocene, Southern Germany). Facies Int J Paleontol Sedimentol Geol 33:35–90

    Google Scholar 

  • Ben Haj Ali M, Jédoui Y, Dali T, Bensalem H, Memmi L (1985) Carte géologique de la Tunisie au 1/500 000. Service des Mines, de l’industrie et de l’Energie, Tunis, Tunisie

  • Brook GA, Railsback LB, Marais E (2011) Reassessment of carbonate ages by dating both carbonate and organic material from an Etosha Pan (Namibia) stromatolite: evidence of humid phases during the last 20 ka. Quatern Int 229(1–2):24–37

    Google Scholar 

  • Burne RV, Moore LS (1987) Microbialites: organosedimentary deposits of benthic microbial communities. Palaios 2:241–254

    Google Scholar 

  • Burollet PF, Sainfeled P (1956) Notice explicative de la carte géologique au 1/50 000 de Tadjerouine (51). Service des Mines, de l’industrie et de l’Energie. Tunis, Tunisie. 36 p

  • Bustillo MA, Armenteros I, Huerta P (2017) Dolomitization, gypsum calcitization and silicification in carbonate–evaporite shallow lacustrine deposits. Sedimentology 64(4):1147–1172

    Google Scholar 

  • Capezzuoli E, Gandin A, Pedley M (2014) Decoding tufa andtravertine (fresh water carbonates) in the sedimentary record: the state of the art. Sedimentology 61:1–21

    Google Scholar 

  • Casanova J (1994) Stromatolites from the East African Rift: a synopsis. In: Bertrand-Sarfati J, Monty C (eds) Phanerozoic Stromatolites II. Kluwer Academic Publishers, Dordrecht, The Netherlands, pp 193–226

    Google Scholar 

  • Casanova C, Hillarie-Marcel C (1992) Chronology and paleohydrology of Late Quaternary high levels in the Manyara Basin (Tanzania) from isotopic data (12C, 18O, 14C U/Th) on fossil stromatolites. Quatern Res 38:1–22

    Google Scholar 

  • Causse C, Coque R, Fontes JC, Gasse F, Gibert E, Ouezdou HB, Zouari K (1989) Two high levels of continental waters in the southern Tunisian chotts at about 90 and 150 ka. Geology 17(10):922–925

    Google Scholar 

  • Causse C, Ghaleb B, Chkir N, Zouari K, Ouezdou HB, Mamou A (2003) Humidity changes in southern Tunisia during the Late Pleistocene inferred from U-Th dating of mollusc shells. Appl Geochem 18(11):1691–1703

    Google Scholar 

  • Chafetz HS, Folk RL (1984) Travertines: depositional morphology and the bacterially constructed constituents. J Sediment Res 54(1):289–316

    Google Scholar 

  • Chafetz HS, Rush PF, Utech NM (1991) Microenvironmental controls on mineralogy and habit of CaCO3 precipitates: an example from an active travertine system. Sedimentology 38:107–126

    Google Scholar 

  • Chafetz HS, Guidry SA (1999) Bacterial shrubs, crystal shrubs, and ray-crystal shrubs: bacterial vs. abiotic precipitation. Sediment Geol 126(1):57–74

    Google Scholar 

  • Cojan I (1999) Carbonate-rich paleosoils in the Late Cretaceous-early Palaeogene series of the Provence (France). In: Thiry M, Simon-Coinçon R (eds) Palaeoweathering, palaeosurfaces and related continental deposits. International Association of Sedimentologist Special Publication 27, pp 323–335

  • Cook M, Chafetz HS (2017) Sloping fan travertines, Belen, New Mexico, USA. Sed Geol 352:30–44

    Google Scholar 

  • Crombie MK, Arvidson RE, Sturchio NC, El Alfy Z, Abu Zeid K (1997) Age and isotopic constraints on Pleistocene pluvial episodes in the Western Desert, Egypt. Palaeogeogr Palaeoclimatol Palaeoecol 130:337–355

    Google Scholar 

  • Croci A, Della Porta G, Capezzuoli E (2016) Depositional architecture of a mixed travertine-terrigenous system in a fault-controlled continental extensional basin (Messinian, Southern Tuscany, Central Italy). Sediment Geol 332:13–39

    Google Scholar 

  • Davaud E, Girardclos S (2001) Recent freshwater ooids and oncoids from western Lake Geneva (Switzerland): indications of a common organically mediated origin. J Sediment Res 71(3):423–429

    Google Scholar 

  • Dean WE, Fouch TD (1983) Lacustrine environment. In: Scholle PA, Bebout DG, Moore CH (eds) Carbonate depositional environments. American Association of Petroleum Geologists Mem. 33, pp 97–130

  • Dean WE, Eggleston JR (1984) Freshwater oncolites created by industrial pollution, Onondaga Lake, New York. Sed Geol 40:217–232

    Google Scholar 

  • Dickson JAD (1965) A modified staining technique for carbonates in thin section. Nature 205–587

  • Erthal MM, Capezzuoli E, Mancini A, Claes H, Soete J, Swennen R (2017) Shrub morpho-types as indicator for the water flow energy-Tivoli travertine case (Central Italy). Sed Geol 347:79–99

    Google Scholar 

  • Folk RL, Chafetz HS, Tiezzi PA (1985) Bizarre forms of depositional and diagenetic calcitein hot-spring travertines, Central Italy. In: Schneidermann N, Harris P (eds) Carbonate cements. Society of Economic Paleontologists and Mineralogists, Special Publication 36, pp 349–369

  • Fontes JCh, Gasse F (1989) On the ages of humid Holocene and late Pleistocene phases in Northern Africa. Remarks on ‘Late Quaternary climatic reconstruction for the Maghreb (North Africa)’ by P. Rognon. Palaeogeogr Palaeoclimatol Palaeoecol 70:393–398

    Google Scholar 

  • Ford TD, Pedley HM (1996) A review of tufa and travertine deposits of the world. Earth Sci Rev 41:117–175

    Google Scholar 

  • Freytet P, Plaziat JC (1982) Continental Carbonate Sedimentation and Pedogenesis Late Cretaceous and Early Tertiary of Southern France. In: Purser BH (ed) Contributions to Sedimentology 12, E. Schweizerbart’sche Verlagsbuchhandlung (Nägele u. Obermiller), Stturgart, p 213

    Google Scholar 

  • Freytet P, Plet A (1996) Modern freshwater microbial carbonates: the Phormidium stromatolites (tufa-travertine) of southeastern Burgundy (Paris Basin, France). Facies 34(1):219–238

    Google Scholar 

  • Freytet P, Verrecchia EP (1998) Freshwater organisms that build stromatolites: a synopsis of biocrystallization by prokaryotic and eukaryotic algae. Sedimentology 45:535–563

    Google Scholar 

  • Freytet P, Verrecchia E (1999) Calcitic radial palisadic fabric in freshwater stromatolites: diagenetic and recrystallized feature or physicochemical sinter crust? Sed Geol 126:97–102

    Google Scholar 

  • Frifita N, Arfaoui MS, Zargouni F (2016) Relationship between surface and subsurface structures of the northern Atlas foreland of Tunisia deduced from regional gravity analysis. J Geophys Eng 13:634–645

    Google Scholar 

  • Gandin A, Capezzuoli E (2014) Travertine: distinctive depositional fabrics of carbonates from thermal spring systems. Sedimentology 61:264–290

    Google Scholar 

  • Gaven G, Hillaire-Marcel C, Petit-Maire N (1981) A Pleistocene lacustrine episode in southeastern Libya. Nature 290:131–133

    Google Scholar 

  • Geyh MA, Thiedig T (2008) The Middle Pleistocene Al Mahrúqah Formation in the Murzuq Basin, northern Sahara, Libya evidence for orbitally-forced humid episodes during the last 500,000 years. Palaeogeogr Palaeoclimatol Palaeoecol 257:1–21

    Google Scholar 

  • Ghannem N (2018) Relation entre changements climatiques et formations des carbonates continentaux de type lacustre palustre d’âge quaternaire dans la région de Tajerouine (El Kef). Thèse de doctorat en Géologie. Faculté des Sciences de Bizerte, Université de Carthage, Tunisie, 218 p

  • Ghannem N, Recio C, Armenteros I, Azizi R, Regaya K (2019) A Middle-Late Pleistocene palustrine–lacustrine–travertine system (Borj Edouane Unit, NW Tunisia): sedimentology, stable isotopes, and palaeohydrological implications. Int J Earth Sci. https://doi.org/10.1007/s00531-019-01798-4

    Article  Google Scholar 

  • Gierlowski-Kordesch EH (2010) Lacustrine carbonates. In: Alonso-Zarza AM, Tanner LH (eds) carbonates in continental settings: facies, environments and processes developments in sedimentology 61. Elsevier, Amsterdam, pp 1–101

    Google Scholar 

  • Golubić S, Fischer AG (1975) Ecology of calcareous nodules forming in Little Connestoga Creek near Lancaster, Pennsylvania. Internationale Vereinigung für theoretische und angewandte Limnologie: Verhandlungen 19(3):2315–2323

    Google Scholar 

  • Golubić S, Violante C, Plenković-Moraj A, Grgasović T (2008) Travertines and calcareous tufa deposits: an insight into diagenesis. Geologia Croatica 61(2–3):363–378

    Google Scholar 

  • Grey K (1989) Handbook for the study of stromatolites and associated structures. In: Kennard J, Burne RV (eds) Stromatolite Newsletter 14. Canberra, Australia, pp 82–171. https://www.researchgate.net/publication/260392244_Stromatolite_Newsletter/stat. Accessed 28 Feb 2014

  • Hägele D, Leinfelder R, Grau J, Burmeister EG, Struck U (2006) Oncoids from the river Alz (southern Germany): tiny ecosystems in a phosphorus-limited environment. Palaeogeogr Palaeoclimatol Palaeoecol 237(2–4):378–395

    Google Scholar 

  • Haas F (1991) Fauna malacológica terrestre y de agua dulce de Cataluña Treballas del Museu de Zoología, Museo de Ciencias Naturales, Barcelona, Spain 5, 554 p. (in Spanish)

  • Hamdi MS, Soumaya A, Kadri A, Ben Ayed N, Braham A, Shimi N (2019) Evolution of E-W strike-slip fault networks, the northwestern foreland of Tunisia. J Afr Earth Sc. https://doi.org/10.1016/j.jafrearsci.2019.02.024

    Article  Google Scholar 

  • Hancock PL, Chalmers RML, Altunel E, Çakir Z (1999) Travitonics: using travertines in active fault studies. J Struct Geol 21(8–9):903–916

    Google Scholar 

  • Henchiri M, Ben Ahmed W, Brogi A, Cihat Alçiçek M, Benassi R (2017) Evolution of Pleistocene travertine depositional system from terraced slope to fissure-ridge in a mixed travertine-alluvial succession. Jebel El Mida, Gafsa, southern Tunisia. Geodin Acta 29(1):20–41

    Google Scholar 

  • Hillaire-Marcel C, Casanova J (1987) Isotopic hydrology and paleohydrology of the Madagi (Kenya)-Natron (Tanzania) basin during the late Quaternary. Palaeogeogr Palaeoclimatol Palaeoecol 58(3–4):155–181

    Google Scholar 

  • Huerta P, Armenteros I (2005) Calcrete and palustrine assemblages on a distal alluvial-floodplain: a response to local subsidence (Miocene of the Duero basin, Spain). Sed Geol 177:253–270

    Google Scholar 

  • Inoubli N, Gouasmia M, Gasmi M, Mhamdi A, Ben Dhia H (2006) Integration of geological, hydrochemical and geophysical methods for prospecting thermal water resources: the case of the Hmeïma region (Central–Western Tunisia). J Afr Earth Sc 46:180–186

    Google Scholar 

  • James NP, Jones B (2016) Origin of carbonate sedimentary rocks. John Wiley & Sons, Chichester, p 446

    Google Scholar 

  • Janssen A, Swennen R, Podoor N, Keppens E (1999) Biological and diagenetic influence in Recent and fossil tufa deposits from Belgium. Sed Geol 126:75–95

    Google Scholar 

  • Jédoui Y, Reyss JL, Jallel N, Montacer M, Ismaiil HB, Davaud E (2003) U-series evidence for two high Last Interglacial sea levels in southeastern Tunisia. Quatern Sci Rev 22:343–351

    Google Scholar 

  • Jones B, Renaut RW (2010) Calcareous spring deposits in continental settings. In: Alonso-Zarza AM, Tanner LH (eds) Carbonates in continental settings. Developments in sedimentology 61. Elsevier, Amsterdam, pp 177–224

    Google Scholar 

  • Kano A, Matsuoka J, Kojo T, Fujii H (2003) Origin of annual laminations in tufa deposits, southwest Japan. Palaeogeogr Palaeoclimatol Palaeoecol 191(2):243–262

    Google Scholar 

  • Kieniewicz JM, Smith JR (2009) Paleoenvironmental reconstruction and water balance of a mid-Pleistocene pluvial lake, Dakhleh Oasis, Egypt. Geol Soc Am Bulletin 121(7–8):1154–1171

    Google Scholar 

  • Koban CG, Schweigert G (1993) Microbial origin of travertine fabrics—two examples from southern Germany (Pleistocene Stuttgart travertines and Miocene Riedöschingen travertine). Facies 29(1):251–263

    Google Scholar 

  • Martin-Bello L, Arenas C, Jones B (2019) Lacustrine stromatolites: Useful structures for environmental interpretation—an example from the Miocene Ebro Basin. Sedimentology 66:2098–2133

    Google Scholar 

  • Martínez-Navarro B, Karoui-Yaakoub N, Oms O, Amri L, López-García JM, Zerai K, Blain HA, Mtimet MS, Espigares MP, Haj Ali NB, Ros-Montoya S, Boughdiri M, Agustí J, Khayati-Ammar H, Maalaoui K, Om El Khir M, Sala R, Othmani A, Hawas R, Gómez-Merino G, Solè À, Carbonell E, Palmqvist P (2014) The early Middle Pleistocene archeopaleontological site of Wadi Sarrat (Tunisia) and the earliest record of Bos primigenius. Quat Sci Rev 90:37–46

    Google Scholar 

  • Minissale A (2004) Origin, transport and discharge of CO2 in central Italy. Earth Sci Rev 66:89–141

    Google Scholar 

  • Nichols G (2009) Sedimentology and stratigraphy. John Wiley & Sons

  • Nicoll K, Sallam ES (2017) Paleospring tufa deposition in the Kurkur Oasis region and implications for tributary integration with the River Nile in southern Egypt. J Afr Earth Sc 136:239–251

    Google Scholar 

  • Ordóñez S, García del Cura MA (1983) Recent and Tertiary fluvial carbonates in Central Spain. In: Collinson JDJ, Levin J (eds) Modern and ancient fluvial systems International Association of Sedimentologists, Special Publication 6, pp 485–497

  • Parcerisa D, Gómez-Gras, D, Martín-Martín JD (2006) Calcretes, oncolites, and lacustrine limestones in Upper Oligocene alluvial fans of the Montgat area (Catalan Coastal Ranges, Spain). In: Alonso-Zarza AM, Tanner LH (eds) Paleoenvironmental Record and Applications of Calcretes and Palustrine Carbonates: Geological Society of America Special Paper 416, pp 105–118, https://doi.org/https://doi.org/10.1130/2006.2416(07)

  • Pedley HM (1990) Classification and environmental models of cool freshwater tufa. Sed Geol 68:143–154

    Google Scholar 

  • Pentecost A (2005) Travertine. Springer-Verlag, Berlin

    Google Scholar 

  • Pérez Jiménez JL (2010) Sedimentología, silicificaciones y otros procesos diagenéticos en las unidades intermedia y superior del Mioceno de la Cuenca de Madrid (Zonas NE, NW y W). Tesis Doctoral. Facultad de ciencias geologicas, Universidad Complutense de Madrid, Madrid (in Spanish, with English abstract)

  • Riding R (2002) Structure and composition of organic reefs and carbonate mud mounds: concepts and categories. Earth Sci Rev 58:163–231

    Google Scholar 

  • Schäfer A, Stapf KRG (1978) Permian Saar-Nahe Basin and recent Lake Constance (Germany): two environments of lacustrine algal carbonates. In: Matter A, Tucker ME (eds) Modern and Ancient Lake Sediments. International Association of Sedimentologists, Special publication 2, Blackwell, Oxford, pp 83–197

    Google Scholar 

  • Smith JR, Giegengack R, Schwarcz HP (2004) Constraints on Pleistocene pluvial climates through stable-isotope analysis of fossil-spring tufas and associated gastropods, Kharga Oasis, Egypt. Palaeogeogr Palaeoclimatol Palaeoecol 206(1–2):157–175

    Google Scholar 

  • Smith JR, Hawkins AL, Asmerom Y, Giegengack PV (2007) New age constraints on the Middle Stone Age occupations of Kharga Oasis, Western Desert. Egypt J Hum Evol 52:690–701

    Google Scholar 

  • Sultan M, Sturchio N, Hassan FA, Hamdan MAR, Mahmood AM, Alfy ZE, Stein T (1997) Precipitation source inferred from stable isotopic composition of Pleistocene groundwater and carbonate deposits in the Western Desert of Egypt. Quatern Res 48:29–37

    Google Scholar 

  • Szabo BJ, Mchugh WP, Schaber GG, Haynes CV Jr, Breed CS (1989) Uranium series dated authigenic carbonates and Acheulian sites in southern Egypt. Science 243:1053–1056

    Google Scholar 

  • Verrecchia EP, Freytet P, Verrecchia KE, Dumont JL (1995) Spherulites in calcrete laminar crusts: biogenic CaCO3 precipitation as a major contributor to crust formation. J Sediment Res 65(4):690–700

    Google Scholar 

  • Viles HA, Pentecost A (2007) Tufa and travertine. In: Nash DJ, McLaren S (eds) Geochemical sediments and landscapes. RGS-IBG Series. BlackwellPublishing, Oxford, pp 172–199

    Google Scholar 

  • Wanas HA, Armenteros I (2019) Microbially-induced fluvial tufa in Gunna hills, Farafra Oasis, Egypt: facies analysis and stable isotopes. J Afr Earth Sc 158:103–515

    Google Scholar 

  • Wright VP, Tucker ME (1991) Calcretes: an introduction. In: Wright VP, Tucker ME (eds) Calcretes. IAS Reprint Series 2, pp 1–22.

Download references

Acknowledgements

This work was supported by the Ministry of Higher Education and Scientific Research of Tunisia, and MINECO CGL2014-54818-P. I. Armenteros thanks Professor K. Regaya and the Faculty of Sciences of Bizerte for their hospitality. The thorough review by Dr. C. Arenas, full of useful suggestions, as well as that of two anonymous reviewers helped to improve the original manuscript, for which we are grateful. We are thankful to Dr. C. Recio for the constructive review of the manuscripts and to Judith A. Alfonso for her patient help in the English review. This work is an extension of Naoufel Ghannem's thesis based on new data and interpretations from the 2018 field campaign.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ildefonso Armenteros.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Armenteros, I., Ghannem, N. A wet climatic terrestrial carbonate record in the middle-upper Pleistocene, north Tunisia. Facies 67, 5 (2021). https://doi.org/10.1007/s10347-020-00612-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10347-020-00612-x

Keywords

Navigation