Skip to main content

Advertisement

Log in

Adaptation of food legumes to problem soils using integrated approaches

  • Review
  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

Problem soils impose various stresses on plants and significantly reduce crop yield. As a sizable area sown in food legume crops falls under the designation of problem soils, the development of tolerant varieties and appropriate agronomic practices to ameliorate problem soils is required to increase food legume production. With respect to food legume cultivation, research efforts focusing on the development of cultivars tolerant to problem soils and on integrated management practices for soil amelioration have been limited to date. Here we review the various types of problematic soils and recent efforts in the development of appropriate technologies, including high-throughput plant phenotyping, breeding of tolerant varieties, and innovations in agronomy, that are contributing to or potentially will contribute to the adaptation of food legume crops to problem soils. The significant points are: (1) recent advances in plant phenotyping platforms offer new suites of technologies that facilitate the rapid identification of new genes related to tolerance mechanisms and the rapid development of improved cultivars better adapted to adverse soil conditions; (2) advances in plant genomics and recent developments in plant phenomics contribute towards more precise measurements of plant traits of interest; and (3) improved agronomic practices with appropriate amelioration measures would help to bring about changes in the soil conditions, improving them for cultivation and also providing a practical solution for problem soils. Integrated approaches, including tolerant varieties, amelioration measures, and improved agronomic practices suitable for the region, have the potential to be a sustainable approach by which food legumes could be adapted to problem soils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abd Elrahman SH, Mostafa MAM, Taha TA, Elsharawy MAO, Eid MA (2012) Effect of different amendments on soil chemical characteristics, grain yield and elemental content of wheat plants grown on salt-affected soil irrigated with low quality water. Ann Agric Sci 57(2):175–182. https://doi.org/10.1016/j.aoas.2012.09.001

    Article  Google Scholar 

  • Abd-Alla MH, Nafadya NA, Bashandya SR, Hassanb AA (2020) Mitigation of effect of salt stress on the nodulation, nitrogen fixation and growth of chickpea (Cicer arietinum L.) by triple microbial inoculation. Rhizosphere 10:100148. https://doi.org/10.1016/j.rhisph.2019.100148

    Article  Google Scholar 

  • Abd Elhamid MT, Sadak MSH, Schmidhalter URS, El-Saady M (2013) Interactive effects of salinity stress and nicotinamide on physiological and biochemical parameters on faba bean plant. Acta Biol Colomb 18(3):499–510

    Google Scholar 

  • Abedin J, Unc A (2020) Addition of biochar to acidic boreal podzolic soils enhances micronutrient availability and crop productivity. Open Agric 5:188–201. https://doi.org/10.1515/opag-2020-0021

    Article  Google Scholar 

  • Abou El-Defan TA, El-Banna IMM, El-Maghraby TA, Abdallah ME, Selem MM (2005) Efficiency of some amendments added to clayey soil irrigated with drainage water. J Agric Sci Mansoura Univ 30:3479–3489

    Google Scholar 

  • Abrol IP, Bhumbla DR (1979) Crop responses to differential gypsum applications in a highly sodic soil and the tolerance of several crops to exchangeable sodium under field condition. Soil Sci 127:79–85

    CAS  Google Scholar 

  • Abrol IP, Yadav JSP, Massoud FI (1988) Salt affected soils and their management. FAO Soils Bull 39:5–8

    Google Scholar 

  • Adcock KG, Gartrell JW, Brennan RF (2001) Calcium deficiency of wheat grown in acidic sandy soil from southwestern Australia. J Plant Nutr 24:1217–1227. https://doi.org/10.1081/PLN-100106977

    Article  CAS  Google Scholar 

  • Adeleye EO, Ayeni LS, Ojeniyi SO (2010) Effect of poultry manure on soil physico-chemical properties, leaf nutrient contents and yield of yam (Dioscorea rotundata) on Alfisol in Southwestern Nigeria. J Am Sci 6(10):871–878

    Google Scholar 

  • Adeniyan ON, Ojo AO, Akinbode OA, Adediran JA (2011) Comparative study of different organic manures and NPK fertilizer for improvement of soil chemical properties and dry matter yield of maize in two different soils. J Soil Sci Environ Manag 2(1):9–13

    Google Scholar 

  • Ahmad S, Raza MAS, Saleem MF, Zaheer MS, Iqbal R, Haider I, Aslam MU, Ali M, Khan IH (2020) Significance of partial root zone drying and mulches for water saving and weed suppression in wheat. J Anim Plant Sci 30:154–162

    Google Scholar 

  • Al-Ashkar I, Alderfasi A, Romdhane WB, Seleiman MF, El-Said RA, Al-Doss A (2020) Morphological and genetic diversity within salt tolerance detection in eighteen wheat genotypes. Plants 9:287. https://doi.org/10.3390/plants9030287

    Article  CAS  PubMed Central  Google Scholar 

  • Ali Y, Aslam Z, Ashraf MY, Tahir GR (2004) Effect of salinity on chlorophyll concentration, leaf area, yield and yield components of rice genotypes grown under saline environment. Int J Environ Sci Technol 3:221–225. https://doi.org/10.1007/BF03325836

    Article  Google Scholar 

  • Al-Tahir OA, Al-Abdulsalam MA (1997) Growth of faba bean (Vicia faba L.) as influenced by irrigation water salinity and time of salinization. Agric Water Manag 34(2):161–167. https://doi.org/10.1016/S0378-3774(97)00016-4

    Article  Google Scholar 

  • Ameen A (1999) Saline irrigation practices and salt tolerance of lentil varieties. PhD thesis. University of Bari, Bari

  • Amezketa E, Aragues R, Gazol R (2005) Efficiency of sulfuric acid, mined gypsum, and two gypsum by-products in soil crusting prevention and sodic soil reclamation. Agron J 97(3):983

    CAS  Google Scholar 

  • Andrews M, Hodge S (2010) Climate change, a challenge for cool season grain legume crop production. In: Yadav SS, McNeil D, Redden R, Patil SA (eds) Climate change and management of cool season grain legume crops. Springer, New York, pp 1–9

    Google Scholar 

  • Andrews M, Lea PJ, Raven JA, Azevedo RA (2009) Nitrogen use efficiency. 3. Nitrogen fixation: genes and costs. Ann Appl Biol 155(1):1–13. https://doi.org/10.1111/j.1744-7348.2009.00338.x

    Article  CAS  Google Scholar 

  • Anonymous (2004) Reclamation and management of salt affected soils. Central Soil Salinity Research Institute (CSSRI), Karnal

  • Ansari R, Marcar NE, Khanzada AN, Shirazi MU, Crawford DF (2001) Mulch application improves survival but not growth of Acacia ampliceps Maslin, Acacia nilotica L. and Conocarpus lancifolius L. on a saline site in southern Pakistan. Int For Rev 3:158–163

    Google Scholar 

  • Ashkan A, Moemeni J (2013) Effect of salinity stress on seed germination and seedling vigour indices of two halophytic plant species (Agropyron elongatum and A. pectiniforme). Int J Agric Crop Sci 5:2669–2676

    Google Scholar 

  • Ashraf M, Waheed A (1990) Screening of local-exotic accessions of lentil (Lens culinaris Medik) for salt tolerance at two growth stages. Plant Soil 128(2):167–176. https://doi.org/10.1007/BF00011106

    Article  CAS  Google Scholar 

  • Ashraf M, Zafar ZU, Ansari TM (1997) Accumulation of some essential nutrients by lentil (Lens culinaris) plants at low potassium regimes. Arid Land Res Manag 11:95–103

    Google Scholar 

  • Atieno J, Li Y, Langridge P, DowlingK BC, Berger B, Varshney RK, Sutton T (2017) Exploring genetic variation for salinity tolerance in chickpea using image-based phenotyping. Sci Rep 7:300. https://doi.org/10.1038/s41598-017-01211-7

    Article  CAS  Google Scholar 

  • Atwell BJ (1991) Factors which affect the growth of grain legumes on a solonized brown soil II. genotypic responses to soil chemical factors. Aust J Agric Res 42:107–119

    CAS  Google Scholar 

  • Badia D (2000) Straw management effects on organic matter mineralization and salinity in semiarid agricultural soils. Arid Soil Res Rehabil 14:193–203. https://doi.org/10.1080/089030600263111

    Article  Google Scholar 

  • Bagheri A, Paull JG, Rathjen AJ (1994) The response of Pisum sativum L. germplasm to high concentrations of soil boron. Euphytica 75:9–17. https://doi.org/10.1007/BF00024526

    Article  CAS  Google Scholar 

  • Banerjee BP, Joshi S, Thoday-Kennedy E, Pasam RK, Tibbits J, Hayden M, Spangenberg G, Kant S (2020) High-throughput phenotyping using digital and hyperspectral imaging-derived biomarkers for genotypic nitrogen response. J Exp Bot 71(15):4604–4615. https://doi.org/10.1093/jxb/eraa143

    Article  PubMed  PubMed Central  Google Scholar 

  • Barneze AS, Whitaker J, McNamara NP, Ostle NJ (2020) Legumes increase grassland productivity with no effect on nitrous oxide emissions. Plant Soil 446:163–177. https://doi.org/10.1007/s11104-019-04338-w

    Article  CAS  Google Scholar 

  • Barzegar AR, Neson PN, Oades JM, Rengasamy P (1997) Organic matter, sodicity and clay type: influence on soil aggregation. Soil Sci Soc Am J 61:1131–1137

    CAS  Google Scholar 

  • Bauder TA, Davis JG, Waskom RM (2014) Managing saline soils. Colorado State University Open Press, Fort Collins

    Google Scholar 

  • Bekmirzaev G, Ouddane B, Beltrao J, Fujii Y (2020) The impact of salt concentration on the mineral nutrition of Tetragonia tetragonioides. Agric 10:238. https://doi.org/10.3390/agriculture10060238

    Article  Google Scholar 

  • Belachew KY, Stoddard FL (2017) Screening of faba bean (Vicia faba L.) accessions to acidity and aluminium stresses. PeerJ 5:e2963. https://doi.org/10.7717/peerj.2963

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berger B, Parent B, Tester M (2010) High-throughput shoot imaging to study drought responses. J Exp Bot 61:3519–3528. https://doi.org/10.1093/jxb/erq201

    Article  CAS  PubMed  Google Scholar 

  • Berta S (2014) Change in soil pH and chemical properties of acidic soil following application of different animal manures. Int Multidisciplinary e-J 3(8):92–107

    Google Scholar 

  • Bett K, Ramsay L, Chan C, Sharpe AG, Cook DR , Penmetsa RV, Chang P, Coyne C, McGee R, Main D, Edwards D, Kaur S, Vandenberg A (2016) Lentil 1.0 and beyond. In: Proc Plant and Animal Genomics Conference XXIV, 9–13 January 2016. San Diego

  • Bharambe PR, Shelke DK, Jadhav GS, Vaishnava VG, Oza SR (2001) Management of salt-affected vertisols with subsurface drainage and crop residue incorporation under soybean-wheat cropping system. J Indian Soc Soil Sci 49(1):24–29

    Google Scholar 

  • Bian M, Waters I, Broughton S, Zhang XQ, Zhou M, Lance R, Sun D, Li C (2013) Development of gene-specific markers for acid soil/aluminium tolerance in barley (Hordeum vulgare L.). Mol Breed 32:155–164

    CAS  Google Scholar 

  • Bierschenk B, Tagele MT, Ali B, Ashrafuzzaman MD, Wu LB, Becker M, Frei M (2020) Evaluation of rice wild relatives as a source of traits for adaptation to iron toxicity and enhanced grain quality. PLoS ONE 15(1):e0223086. https://doi.org/10.1371/journal.pone.0223086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bojović B, Delić G, Topuzović M, Stanković M (2010) Effects of NaCl on seed germination in some species from families Brassicaceae and Solanaceae. Kragujevac J Sci 32:83–87

    Google Scholar 

  • Cerda A, Bingham FT, Hoffman G (1977) Interactive effect of salinity and phosphorus on sesame. Soil Sci Soc Am J 41:915–918

    CAS  Google Scholar 

  • Chaerle L, Leinonen I, Jones HG, van der Straeten D (2007) Monitoring and screening plant populations with combined thermal and chlorophyll fluorescence imaging. J Exp Bot 58:773–784

    CAS  PubMed  Google Scholar 

  • Chatterjee A, Lal R (2009) On farm assessment of tillage impact on soil carbon and associated soil quality parameters. Soil Till Res 104:270–277. https://doi.org/10.1016/j.still.2009.03.006

    Article  Google Scholar 

  • Chaturvedi SK, Kumar S, Dua RP (2003) Chickpea breeding. In: Ali M, Kumar S, Singh NB (eds) Chickpea research in India. Indian Institute of Pulses Research, Kanpur, pp 69–98

    Google Scholar 

  • Chitgupekar SS, Kumar NG, Patil SB (2014) Influence organic manures and chemical fertilizers on the soil parameters in soybean cropping system. Int J Agric Sci 10:115–120

    Google Scholar 

  • Chitgupekar SS, Kumar NG, Patil SB (2013) Effect of nutrient management practices on the incidence of insect pests and productivity of soybean (Glycine max L.) under rainfed farming. J Exp Zoo 16(1):297–301

    Google Scholar 

  • Choudhury S, Sharma P (2014) Aluminum stress inhibits root growth and alters physiological and metabolic responses in chickpea (Cicer arietinum L.). Plant Physiol Biochem 85:63–70. https://doi.org/10.1016/j.plaphy.2014.10.012

    Article  CAS  PubMed  Google Scholar 

  • Cobb JN, DeClerck G, Greenberg A, Clark R, McCouch SR (2013) Next-generation phenotyping: requirements and strategies for enhancing our understanding of genotype–phenotype relationships and its relevance to crop improvement. Theor Appl Genet 126:867–887. https://doi.org/10.1007/s00122-013-2066-0

    Article  PubMed  PubMed Central  Google Scholar 

  • Cordovilla MP, Ligero F, Lluch C (1995) Influence of host genotypes on growth, symbiotic performance and nitrogen assimilation in faba bean (Vicia faba L.) under salt stress. Plant Soil 172:289–297

    CAS  Google Scholar 

  • Craats DV, Zee SEATM, Sui C, Asten PJA, Cornelissen P, Leijnse A (2020) Soil sodicity originating from marginal groundwater. Vadose Zone J 19:e20010. https://doi.org/10.1002/vzj2.20010

    Article  CAS  Google Scholar 

  • Crawford Jr TW, Singh U, Breman H (2008) Solving problems related to soil acidity in Central Africa’s Great Lakes Region. International Center for Soil Fertility and Agricultural Development (IFDC), Muscle Shoals

  • Das B, Manohara KK, Mahajan GR, Sahoo RN (2020) Spectroscopy based novel spectral indices, PCA- and PLSR-coupled machine learning models for salinity stress phenotyping of rice. Spectrochim Acta A Mol Biomol Spectrosc 229:117983. https://doi.org/10.1016/j.saa.2019.117983

    Article  CAS  PubMed  Google Scholar 

  • Debnath S, Debnath T, Paul M, Rogiers S, Baby T, Rahaman DMM, Zheng L, Schmidtke L (2020) Hyperspectral imaging to detect age, defects and individual nutrient deficiency in grapevine leaves. Sensors 20.

  • Dehnavi AR, Zahedi M, Ludwiczak A, Perez SC, Piernik A (2020) Effect of salinity on seed germination and seedling development of sorghum (Sorghum bicolor (L.) Moench) genotypes. Agron 10:859. https://doi.org/10.3390/agronomy10060859

    Article  CAS  Google Scholar 

  • Deshpande HH, Devasenapathy P, Patil SB (2010) Physiological attributes of rice (Oryza sativa L.) as influenced by Sesbania acculata and other organic sources of materials. Int J Agric Sci 6(2):519–524

    Google Scholar 

  • Diaz F, Jimenez CC, Tejedor M (2005) Influence of the thickness and grain size of tephra mulch on soil water evaporation. Agric Water Manag 74(2005):47–55

    Google Scholar 

  • Ding Z, Kheir AMS, Ali MGM, Ali OAM, Abdelaal AIN, Lin X, Zhou Z, Wang B, Liu B, He Z (2020) The integrated effect of salinity, organic amendments, phosphorus fertilizers, and deficit irrigation on soil properties, phosphorus fractionation and wheat productivity. Sci Rep 10:2736. https://doi.org/10.1038/s41598-020-59650-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dong BB, Zhu HT, Zhong ZK, Ye GF (1996) Study on ecological effect of the forest land under-crop sowing and mulching of coastland soil by newly planted. Acta Agric Zheji 8:154–157

    Google Scholar 

  • Donnini S, Guidi L, Degl’Innocenti E, Zocchi G (2013) Image changes in chlorophyll fluorescence of cucumber leaves in response to iron deficiency and resupply. J Plant Nutr Soil Sci 176:734–742. https://doi.org/10.1002/jpln.201200479

    Article  CAS  Google Scholar 

  • Ehret DL, Redmann RE, Harvey BL, Cipywnyk A (1990) Salinity-induced calcium deficiencies in wheat and barley. Plant Soil 128:143–151. https://doi.org/10.1007/BF00011103

    Article  CAS  Google Scholar 

  • El Moukhtari A, Cabassa-Hourton C, Farissi M, Savouré A (2020) How does proline treatment promote salt stress tolerance during crop plant development? Front Plant Sci 11:1127. https://doi.org/10.3389/fpls.2020.01127

    Article  PubMed  PubMed Central  Google Scholar 

  • El-Banna IMM, Abou El-Defan TA, Selem MMI, El-Maghraby TA (2004) Potassium fertilization and soil amendments interactions and their effects on wheat irrigated with different water qualities. J Agric Sci Mansoura Univ 29:5953–5963

    Google Scholar 

  • El-Hendawy SE, Ruan Y, Hu Y, Schmidhalter U (2009) A comparison of screening criteria for salt tolerance in wheat under field and controlled environmental conditions. J Agron Crop Sci 195:356–367. https://doi.org/10.1111/j.1439-037X.2009.00372.x

    Article  CAS  Google Scholar 

  • Fageria NK, Baligar VC (2008) Ameliorating soil acidity of tropical Oxisols by liming for sustainable crop production. Adv Agron 99:345–431

    CAS  Google Scholar 

  • Food and Agriculture Organization (FAO) (2005) Global network on integrated soil management for sustainable use of salt affected soils. FAO Land and Plant Nutrition Management Service, Rome

    Google Scholar 

  • Feng X, Zhan Y, Wang Q et al (2020) Hyperspectral imaging combined with machine learning as a tool to obtain high-throughput plant salt-stress phenotyping. Plant J 101(6):1448–1461. https://doi.org/10.1111/tpj.14597

    Article  CAS  PubMed  Google Scholar 

  • Ferreira R, Moreira A, Rassini J (2006) Toxidez de alumínio em culturas anuais. Documento 63. Embrapa Pecuária Sudeste, São Carlos

  • Filho FG, Dias NS, Suddarth SRP, Ferreira JFS, Anderson RG, Fernandes CS, de Lira RB, Neto MF, Cosme CR (2020) Reclaiming tropical saline-sodic soils with gypsum and cow manure. Water 12:57. https://doi.org/10.3390/w12010057

    Article  CAS  Google Scholar 

  • Fiorani F, Schurr U (2013) Future scenarios for plant phenotyping. Annu Rev Plant Biol 64:267–291. https://doi.org/10.1146/annurev-arplant-050312-120137

    Article  CAS  PubMed  Google Scholar 

  • Flowers TJ, Gaur PM, Gowda CLL, Krishnamurthy L, Srinivasan S, Siddique KHM, Turner NC, Vadez V, Varshney RK, Colmer TD (2010) Salt sensitivity in chickpea. Plant Cell Environ 3:490–509

    Google Scholar 

  • Furbank RT, Tester M (2011) Phenomics—technologies to relieve the phenotyping bottleneck. Trends Plant Sci 16:635–644. https://doi.org/10.1016/j.tplants.2011.09.005

    Article  CAS  PubMed  Google Scholar 

  • Gaballah MS, Gomaa AM (2004) Interactive effect of rhizobium inoculation, sodium benzoate and salinity on performance and oxidative stress in two faba bean varieties. Int J Agric Biol 7:495–498

    Google Scholar 

  • Gan Y, Liang C, Chai Q, Lemke RL, Campbell CA, Zentner RP (2014) Improving farming practices reduces the carbon footprint of spring wheat production. Nat Commun 5:5012. https://doi.org/10.1038/ncomms6012

    Article  PubMed  PubMed Central  Google Scholar 

  • Gardner B, Nielsen D, Shock C (1992) Infrared thermometry and the crop water stress index. I. history, theory, and baselines. J Prod Agric 5:462–466. https://doi.org/10.2134/jpa1992.0462

    Article  Google Scholar 

  • Genc Y, Taylor J, Lyons G, Li Y, Cheong J, Appelbee M, Oldachl K, Sutton T (2019) Bread wheat with high salinity and sodicity tolerance. Front Plant Sci 10:1280. https://doi.org/10.3389/fpls.2019.01280

    Article  PubMed  PubMed Central  Google Scholar 

  • Ghosh PK, Bandyopadhyay KK, Wanjari RH, Manna MC, Misra AK, Mohanty M, Subba Rao A (2007) Legume effect for enhancing productivity and nutrient use-efficiency in major cropping systems—an Indian perspective: a review. J Sust Agric 30:59–86

    Google Scholar 

  • Gouiaa S, Khoudi H, Leidi EO, Pardo JM, Masmoudi K (2012) Expression of wheat Na+/H+ antiporter TNHXS1 and H(+)-pyrophosphatase TVP1 genes in tobacco from a bicistronic transcriptional unit improves salt tolerance. Plant Mol Biol 79:137–155. https://doi.org/10.1007/s11103-012-9901-6

    Article  CAS  PubMed  Google Scholar 

  • Graber ER, Fine P, Levy GJ (2006) Soil stabilization in semiarid and arid land agriculture. J Mater Civ Eng 18:190–205. https://doi.org/10.1061/(ASCE)0899-1561(2006)18:2(190)

    Article  CAS  Google Scholar 

  • Graham PH (1992) Stress tolerance in Rhizobium and Bradyrhizobium, and nodulation under adverse soil conditions. Can J Microbiol 38:475–484

    CAS  Google Scholar 

  • Greenway H, Munns R (1980) Mechanisms of salt tolerance in non-halophytes. Annu Rev Plant Physiol 31:149–190. https://doi.org/10.1146/annurev.pp.31.060180.001053

    Article  CAS  Google Scholar 

  • Grevers MCJ, de Jong E (1993) Soil structure and crop yield over a 5-year period following subsoiling solonetzic and chernozemic soils in Saskatchewan. Can J Soil Sci 73:81–91. https://doi.org/10.4141/cjss93-008

    Article  Google Scholar 

  • Gunarathne V, Senadeera A, Gunarathne U, Biswas JK, Almaroai YA, Vithanage M (2020) Potential of biochar and organic amendments for reclamation of coastal acidic-salt affected soil. Biochar 2:107–120. https://doi.org/10.1007/s42773-020-00036-4

    Article  Google Scholar 

  • Gupta RK, Abrol IP (1990) Salt-affected soils: their reclamation and management for crop production. Adv Soil Sci 11:223–288

    Google Scholar 

  • Gupta SK, Gupta IC (1987) Land development and leaching. In: Gupta Sk, Gupta IC (eds) Management of saline soils and waters. Mohan Primlani, New Dehli, pp 136–152

  • Gurmu F, Mohammed H, Alemaw G (2009) Genotype × environment interactions and stability of soybean for grain yield and nutrition quality. Afr Crop Sci J 17(2):87–89

    Google Scholar 

  • Hajkowicz S, Young M (2005) Costing yield loss from acidity, sodicity and dryland salinity to Australian agriculture. Land Degrad Dev 16:417–433

    Google Scholar 

  • Hallett PD, Bengough AG (2013) Managing the soil physical environment for plants. In: Gregory PJ, Nortcliff S (eds) Soil conditions and plant growth. Blackwell, London, pp 238–268

    Google Scholar 

  • Han Y, Li A, Li F, Zhao M, Wang W (2012) Characterization of a wheat (Triticum aestivum L.) expansin gene, TaEXPB23, involved in the abiotic stress response and phytohormone regulation. Plant Physiol Biochem 54:49–58. https://doi.org/10.1016/j.plaphy.2012.02.007

    Article  CAS  PubMed  Google Scholar 

  • Hanay A, Büyüksönmez F, Kiziloglu FM, Canbolat MY (2004) Reclamation of saline-sodic soils with gypsum and MSW compost. Compost Sci Util 12:175–179

    Google Scholar 

  • Hariadi Y, Shabala S (2004) Screening broad beans (Vicia faba) for magnesium deficiency. I. growth characteristics, visual deficiency symptoms and plant nutritional status. Funct Plant Biol 31:529–537. https://doi.org/10.1071/FP03201

    Article  CAS  PubMed  Google Scholar 

  • Hasegawa PM, Bressan RA, Zhu JK, Bohnert HJ (2000) Plant cellular and molecular responses to high salinity. Annu Rev Plant Physiol Plant Mol Biol 51:463–499. https://doi.org/10.1146/annurev.arplant.51.1.463

    Article  CAS  PubMed  Google Scholar 

  • Hasnain A, Mahmood S, Akhtar S, Malik SA, Bashir N (2011) Tolerance and toxicity levels of boron in mung bean (Vigna radiata (L.) Wilczek) cultivars at early growth stages. Pak J Bot 43:1119–1125

    CAS  Google Scholar 

  • Hayes JE, Pallotta M, Baumann U, Berger B, Langridge P, Sutton T (2013) Germanium as a tool to dissect boron toxicity effects in barley and wheat. Funct Plant Biol 40:618–627. https://doi.org/10.1071/FP12329

    Article  CAS  PubMed  Google Scholar 

  • Haynes RJ (1982) Effects of liming on phosphate availability in acid soils. a critical review. Plant Soil 68:289–308

    CAS  Google Scholar 

  • Haynes RJ, Mokolobate MS (2001) Amelioration of Al toxicity and P deficiency in acid soils by additions of organic residues: a critical review of the phenomenon and the mechanisms involved. Nutr Cycl Agroecosys 59:47–63. https://doi.org/10.1023/A:1009823600950

    Article  CAS  Google Scholar 

  • Hernandez JA, Jimenez A, Mullineaux P, Sevilla F (2000) Tolerance of pea (Pisum sativum L.) to long-term salt stress is associated with induction of antioxidant defences. Plant Cell Environ 23:853–862. https://doi.org/10.1046/j.1365-3040.2000.00602.x

    Article  CAS  Google Scholar 

  • Hobson K, Armstrong R, Nicolas M, Connor D, Materne M (2006) Response of lentil (Lens culinaris) germplasm to high concentrations of soil boron. Euphytica 151:371–382. https://doi.org/10.1007/s10681-006-9159-7

    Article  CAS  Google Scholar 

  • Huang M, Zhang Z, Zhu C, Zhai Y, Lu P (2019) Effect of biochar on sweet corn and soil salinity under conjunctive irrigation with brackish water in coastal saline soil. Sci Hortic 250:405–413. https://doi.org/10.1016/j.scienta.2019.02.077

    Article  CAS  Google Scholar 

  • Huq SMI, Shoaib JUM (2013) The soils of Bangladesh. World Soils Book Ser 1:57–70

    Google Scholar 

  • Hussain I, Sohail M, Tanveer SK, Muneer M (2018) Impact of planting density and growth habit of genotypes on wheat yield under raised bed planting method. Sci Tech Dev 37:158–162

    Google Scholar 

  • Hyundae H, Jasenka B, Daniel R, Keith K (2014) High throughput imaging and analysis for biological interpretation of agricultural plants and environmental interaction. In: Niel KS, Bingham PR (eds) Proceedings IS&T/SPIE on Image processing: machine vision applications VII. San Francisco, California, United States. https://doi.org/10.1117/12.2042562

  • Ilyas M, Qureshi RH, Qadir M (1997) Chemical changes in a saline-sodic soil after gypsum application and cropping. Soil Technol 10:247–260. https://doi.org/10.1016/S0933-3630(96)00121-3

    Article  Google Scholar 

  • Jalota SK, Prihar SS (1990) Effect of straw mulch on evaporation reduction in relation to rates of mulching and evaporativity. J Indian Soc Soil Sci 38:728–730

    Google Scholar 

  • James RA, Blake C, Byrt CS, Munns R (2011) Major genes for Na+ exclusion, Nax1 and Nax2 (wheat HKT1;4 and HKT1;5), decrease Na+ accumulation in bread wheat leaves under saline and waterlogged conditions. J Exp Bot 62:2939–2947. https://doi.org/10.1093/jxb/err003

    Article  CAS  PubMed  Google Scholar 

  • Jamil A, Riaz S, Ashraf M, Foolad MR (2011) Gene expression profiling of plants under salt stress. Crit Rev Plant Sci 30:435–458. https://doi.org/10.1080/07352689.2011.605739

    Article  Google Scholar 

  • Jones DL, Kochian LV (1996) Aluminum-organic acids interactions in acid soils. I. effect of root derived organic acids on the kinetics of Al dissolution. Plant Soil 182:221–228. https://doi.org/10.1007/BF00029053

    Article  CAS  Google Scholar 

  • Kaloki P, Trethowan R, Tan DKY (2019) Effect of genotype × environment × management interactions on chickpea phenotypic stability. Crop Pasture Sci 70(5):453. https://doi.org/10.1071/CP18547

    Article  Google Scholar 

  • Kasinyo PO (2011) Constraints of soil acidity and nutrient depletion on maize (Zea mays L.) production in Kenya PhD thesis. Moi University, Kesses

  • Kasinyo PO, Gudu HO, Othieno CO, Okalebo JR, Opala PA, Manghanga JK, Agalo JJ, Ngetich WK, Kasinyo JA, Osiyo RJ, Nekesa AO, Matiani ET, Odde DW, Ogola BO (2012) Effect of lime, phosphorus and rizhobia on Sesbania susban in a Western Kenyan acid soil. Afr J Agric Res 7(8):2800–2809. https://doi.org/10.5897/ajar11.1450

    Article  Google Scholar 

  • Kasinyo PO, Othieno CO, Gudu HO, Okalebo JR, Opala PA, Ngetich WK, Nymbati RO, Ouma EO, Agalo JJ, Kebeney SJ, Too EJ, Kasinyo JA, Opile WR (2014) Immediate and residual effect of lime and phosphorus fertilizer on soil acidity and maize production in western Kenya. Exp Agric 50(1):128–143. https://doi.org/10.1017/S0014479713000318

    Article  Google Scholar 

  • Katerji N, van Hoorn JW, Hamdy A, Mastrorilli M (2001) Salt tolerance of crops according to three classification methods and examination of some hypothesis about salt tolerance. Agric Water Manag 47:1–8. https://doi.org/10.1016/S0378-3774(00)00099-8

    Article  Google Scholar 

  • Katerji N, van Hoorn JW, Hamdy A, Mastrorilli M, Nachit MM, Oweis T (2005) Salt tolerance analysis of chickpea, faba bean and durum wheat varieties. II Durum wheat. Agric Water Manag 72:195–207. https://doi.org/10.1016/j.agwat.2004.09.014

    Article  Google Scholar 

  • Katerji N, van Hoorn JW, Hamdy A, Mastrorilli M, Oweis T (2005) Salt tolerance analysis of chickpea, faba bean and durum wheat varieties. I. chickpea and faba bean. Agric Water Manag 72:177–194. https://doi.org/10.1016/j.agwat.2004.09.015

    Article  Google Scholar 

  • Kaur C, Selvakumar G, Ganeshamurthy A (2019) Acid tolerant microbial inoculants: a requisite for successful crop production in acidic soils. In: Arora NK, Kumar N (eds) Phyto and rhizo remediation microorganisms for sustainability. Springer, Singapore, pp 235–247. https://doi.org/10.1007/978-981-32-9664-0_10

    Chapter  Google Scholar 

  • Kaur S, Cogan NOI, Stephens A, Noy D, Butsch M, Forster JW, Materne M (2014) EST-SNP discovery and fine-resolution genetic mapping in lentil (Lens culinaris Medik.) enables candidate gene selection for boron tolerance. Theor Appl Genet 127:703–713. https://doi.org/10.1007/s00122-013-2252-0

    Article  CAS  PubMed  Google Scholar 

  • Khan MJ, Jan MT, Khan AU, Arif M, Shafi M (2010) Management of saline sodic soils through cultural practices and gypsum. Pak J Bot 42(6):4143–4155

    Google Scholar 

  • Khan MJ, Muhammad N, Khan MJ, Irshadullah (2004) Influence of management practices and amendments on cotton-wheat cropping system grown under saline sodic soil conditions at Bannu basin. In: Proc 3rd National Drainage Seminar, 7–8 June 2004. Peshawar, Pakistan

  • Kinraide TB (1998) Three mechanisms for the calcium alleviation of mineral toxicities. Plant Physiol 118:513–520

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kovda VA, van den Berg C, Hagan RM (1973) Irrigation, drainage and salinity: an international source book. Hutchison and Co., London

  • Krishnamurthy L, Gaur PM, Basu PS, Chaturvedi SK, Vadez V, Rathore A, Varshney R, Gowda CLL (2011) Genetic variation for heat tolerance in the reference collection of chickpea (Cicer arietinum L.) germplasm. Plant Genet Resour 9:59–69

    Google Scholar 

  • Lado M, Paz A, Ben-Hur M (2004) Organic matter and aggregate size interactions in saturated hydraulic conductivity. Soil Sci Soc Am J 68:234–242

    CAS  Google Scholar 

  • Laenoi S, Phattarakul N, Jamjod S, Yimyam N, Dell B, Rerkasem B (2015) Genotypic variation in adaptation to soil acidity in local upland rice varieties. Plant Genet Resour 13(3):206–212. https://doi.org/10.1017/S1479262114000896

    Article  CAS  Google Scholar 

  • Lebron I, Suarez DL, Alberto F (1994) Stability of a calcareous saline sodic soil during reclamation. Soil Sci Soc Am J 58:1753–1762

    CAS  Google Scholar 

  • Leinonen I, Jones HG (2004) Combining thermal and visible imagery for estimating canopy temperature and identifying plant stress. J Exp Bot 55:1423–1431. https://doi.org/10.1093/jxb/erh146

    Article  CAS  PubMed  Google Scholar 

  • Leogrande R, Vitti C (2019) Use of organic amendments to reclaim saline and sodic soils: a review. Arid Land Res Manage 33:1–21. https://doi.org/10.1080/15324982.2018.1498038

    Article  CAS  Google Scholar 

  • Leonforte A, Forster JW, Redden RJ, Nicolas ME, Salisbury PA (2013) Sources of high tolerance to salinity in pea (Pisum sativum L.). Euphytica 13:203–216. https://doi.org/10.1007/s10681-012-0771-4

    Article  CAS  Google Scholar 

  • Li BQ, Wah LO, Asundi AK (2005) Use of reflectance spectroscopy for early detection of calcium deficiency in plants. In: Proc 3rd International Conference on Experimental Mechanics and 3rd Conference of the Asian Committee on Experimental Mechanics, 3 June 2005. Singapore, pp 693–697

  • Lin HX, Zhu MZ, Yano M, Gao JP, Liang ZW, Su WA, Hu XH, Ren ZH, Chao DY (2004) QTLs for Na+ and K+ uptake of the shoots and roots controlling rice salt tolerance. Theor Appl Genet 108(2):253–260. https://doi.org/10.1007/s00122-003-1421-y

    Article  CAS  PubMed  Google Scholar 

  • Liu F, Guo J, Bai P, Duan Y, Wang X, Cheng Y, Feng H, Huang L, Kang Z (2012) Wheat TaRab7 GTPase Is part of the signaling pathway in responses to stripe rust and abiotic stimuli. PLoS ONE 7(5):e37146. https://doi.org/10.1371/journal.pone.0037146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lopes AS (1983) Solos sob “cerrado”: características, propriedades e manejo. Associação Brasileira para a Pesquisa da Potassa e do Fosfato, Piracicaba

  • Lu CM, Zhang JH (2000) Photosynthetic CO2 assimilation, chlorophyll fluorescence and photoinhibition as affected by nitrogen deficiency in maize plants. Plant Sci 151:135–143. https://doi.org/10.1016/S0168-9452(99)00207-1

    Article  CAS  PubMed  Google Scholar 

  • Ma C, Ma LY, Liu TX, Zuo HJ, Zhang B, Liu Y (2010) Research progress on saline land improvement technology. World For Res 23(2):28–32

    CAS  Google Scholar 

  • Maas EV, Grattan SR (1999) Chapter 3. Crop yields as affected by salinity. In: Skaggs RW, van Schilfgaarde J (eds) Agronomy monographs. Agric Drain 38:55–108

  • Mahler RL (2004) Nutrients plants require for growth. University of Idaho, Moscow

    Google Scholar 

  • Mamo T, Richter C, Heiligtag B (1996) Salinity effects on the growth and ion contents of some chickpea (Cicer arietinum L.) and lentil (Lens culinaris Medik) varieties. J Agron Crop Sci 176(4):235–247. https://doi.org/10.1111/j.1439-037X.1996.tb00468.x

    Article  CAS  Google Scholar 

  • Mann A, Kumar A, Sanwal SK, Sharma PC (2020) Sustainable production of pulses under saline lands in India. In: Hasanuzzaman M (ed) Legume crops. IntechOpen, London, pp 1–18. https://doi.org/10.5772/intechopen.91870

    Chapter  Google Scholar 

  • Mao J, Xu RK, Li JY, Li XH (2010) Dicyandiamide enhances liming potential of two legume materials when incubated with an acid Ultisol. Soil Biol Biochem 42:1632–1635. https://doi.org/10.1016/j.soilbio.2010.05.006

    Article  CAS  Google Scholar 

  • Mashali AM (1995) Integrated soil management for sustainable use of salt affected soil and network activities. In: International Workshop on Integrated Soil Management for Sustainable Use of Salt Affected Soils, 8–10 November 1995. Manila, the Philippines. Proc Workshop 55–75

  • Masle J, Passioura J (1987) The effect of soil strength on the growth of young wheat plants. Funct Plant Biol 4:643–656. https://doi.org/10.1071/PP9870643

    Article  Google Scholar 

  • Materne M, McNeil DL, Hobson K, Ford R (2007) Abiotic stresses. In: Yadav SS, McNeil DL, Stevenson PC (eds) Lentil: an ancient crop for modern times. Springer, Dordrecht, pp 315–330

    Google Scholar 

  • Materne M, Siddique KHM (2009) Agroecology and crop adaptation. In: Erskine W, Muehlbauer FJ, Sarker A, Sharma B (eds) The lentil: botany, production and uses. CABI, Wallingford, pp 47–63

    Google Scholar 

  • McAndrew DW, Malhi SS (1990) Long-term effect of deep plowing solonetzic soil on chemical characteristics and crop yield. Can J Soil Sci 70:619–623. https://doi.org/10.4141/cjss90-059

    Article  Google Scholar 

  • McFarlane D, Cox J (1992) Management of excess water in duplex soils. Aust J Exp Agric 32:857–864. https://doi.org/10.1071/EA9920857

    Article  Google Scholar 

  • Mechri M, Patil SB, Saidi W, Hajri R, Jarrahi T, Gharbi A, Jedidi N (2016) Soil organic carbon and nitrogen status under fallow and cereal-legume species in a Tunisian semi-arid conditions. Eur J Earth Environ 3:1–13

    Google Scholar 

  • Meena RS, Kumar S, Yadav GS (2020) Soil carbon sequestration in crop production. In: Meena RS (ed) Nutrient dynamics for sustainable crop production. Springer Nature, Singapore, pp 1–39

    Google Scholar 

  • Minella E, Sorrells ME (1997) Inheritance and chromosome location of Alp, a gene controlling aluminium tolerance in ‘Dayton’ barley. Plant Breed 116:465–469. https://doi.org/10.1111/j.1439-0523.1997.tb01032.x

    Article  CAS  Google Scholar 

  • Misra AN, Sahu SM, Misra M (1997) Sodium chloride induced changes in leaf growth and pigment and protein contents in two rice cultivars. Biol Plant 47:257–262. https://doi.org/10.1023/A:1000357323205

    Article  Google Scholar 

  • Mkhonza NP, Buthelezi-Dube NN, Muchaonyerwa P (2020) Effects of lime application on nitrogen and phosphorus availability in humic soils. Sci Rep 10:8634. https://doi.org/10.1038/s41598-020-65501-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moreira A, Fageria NK (2010) Liming influence on soil chemical properties, nutritional status and yield of alfalfa grown in acid soil. Rev Bras Ciênc Solo 34:1231–1239

    CAS  Google Scholar 

  • Mueller ND, Gerber JS, Johnston M, Ray DK, Ramankutty N, Foley JA (2012) Closing yield gaps through nutrient and water management. Nature 490:254–257. https://doi.org/10.1038/nature11420

    Article  CAS  PubMed  Google Scholar 

  • Munera-Echeverri JL, Martinsen V, Strand LT, Cornelissen G, Mulder J (2020) Effect of conservation farming and biochar addition on soil organic carbon quality, nitrogen mineralization, and crop productivity in a light textured Acrisol in the sub-humid tropics. PLoS ONE 15(2):e0228717. https://doi.org/10.1371/journal.pone.0228717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681. https://doi.org/10.1146/annurev.arplant.59.032607.092911

    Article  CAS  PubMed  Google Scholar 

  • Murtaza B, Murtaza G, Sabir M, Owens G, Abbas G, Imran M, Shah GM (2017) Amelioration of saline–sodic soil with gypsum can increase yield and nitrogen use efficiency in rice-wheat cropping system. Arch Agron Soil Sci 63(9):1267–1280. https://doi.org/10.1080/03650340.2016.1276285

    Article  CAS  Google Scholar 

  • Nadeem M, Li J, Yahya M, Wang M, Ali A, Cheng A, Wang X, Ma C (2019) Grain legumes and fear of salt stress: Focus on mechanisms and management strategies. Int J Mol Sci 20(4):799. https://doi.org/10.3390/ijms20040799

    Article  CAS  PubMed Central  Google Scholar 

  • Naeini SARM, Cook HF (2000) Influence of municipal compost on temperature, water, nutrient status and the yield of maize in a temperate soil. Soil Use Manag 16(3):215–221

    Google Scholar 

  • Naher UA, Choudhury ATMA, Biswas JC, Panhwar QA, Kennedy IR (2020) Prospects of using leguminous green manuring crop Sesbania rostrata for supplementing fertilizer nitrogen in rice production and control of environmental pollution. J Plant Nutr 43:285–296. https://doi.org/10.1080/01904167.2019.1672734

    Article  CAS  Google Scholar 

  • Naidu R, Rengasamy P (1993) Ion interactions and constraints to plant nutrition in Australian sodic soils. Austr J Soil Res 31:801–819. https://doi.org/10.1071/SR9930801

    Article  CAS  Google Scholar 

  • Negm MA, Salib MM, El-Zaher H (2003) A field trial on biocomposite and sulphur applications for improving the productivity of soil calcareous in nature. Fayoum J Agric Res Dev 17:77–89

    Google Scholar 

  • Nguyen GN, Maharjan P, Maphosa L, Vakani J, Thoday-Kennedy E, Kant S (2019) A robust automated image-based phenotyping method for rapid vegetative screening of wheat germplasm for nitrogen use efficiency. Front Plant Sci 10:1372. https://doi.org/10.3389/fpls.2019.01372

    Article  PubMed  PubMed Central  Google Scholar 

  • Niu CF, Wei W, Zhou QY, Tian AG, Hao YJ, Zhang WK, Ma B, Lin Q, Zhang ZB, Zhang JS, Chen SY (2012) Wheat WRKY genes TaWRKY2 and TaWRKY19 regulate abiotic stress tolerance in transgenic Arabidopsis plants. Plant Cell Environ 35:1156–1170. https://doi.org/10.1111/j.1365-3040.2012.02480.x

    Article  CAS  PubMed  Google Scholar 

  • Niu DL, Wang QJ (2002) Research progress on saline–alkali field control. Chinese J Soil Sci 33(6):449–455

    CAS  Google Scholar 

  • Nleya T, Vandenberg A, Araganosa G, Warkentin T, Muehlbauer FJ, Slinkard AE (2000) Produce quality of food legumes: genotype (G), environment (E) and G×E considerations. In: Knight R (ed) Linking research and marketing opportunities for pulses in the 21st century. Current Plant Science and Biotechnology in Agriculture. Springer, Dordrecht

    Google Scholar 

  • Northcote KH, Skene JKM (1972) Australian soils with saline and sodic properties, CSIRO Australia Soil Publication 27. CSIRO, Melbourne, pp 28–30

    Google Scholar 

  • Onwonga RN, Lelei JJ, Mochoge BE (2010) Mineral nitrogen and microbial biomass dynamics under different acidic soil management practices for maize production. J Agric Sci 2(1):16–30

    Google Scholar 

  • Oosterbaan RJ (2000) Irrigation, groundwater, drainage and soil salinity control in the alluvial fan of Garmsar, Iran. The Food and Agriculture Organization (FAO) of the United Nations/International Institute for Land Reclamation and Improvement (ILRI), Rome/Wageningen

  • Opala PA, Odendo M, Muyekho FN (2018) Effects of lime and fertilizer on soil properties and maize yields in acid soils of Western Kenya. Afr J Agric Res 13(13):657–663. https://doi.org/10.5897/AJAR2018.13066

    Article  CAS  Google Scholar 

  • Opala PA, Okalebo JR, Othieno CO, Kasinyo P (2010) Effect of organic and inorganic phosphorus sources on maize yield in an acid soil in Western Kenya. Nutr Cycl Agroecosys 86:317–329. https://doi.org/10.1007/s10705-009-9294-3

    Article  Google Scholar 

  • Osman KT (2013) Soils: principles properties and management. Springer, Dordrecht

  • Oster JD, Jayawardane NS (1998) Agricultural management of sodic soils. In: Sumner ME, Naidu R (eds) Sodic soils: distribution, properties, management and environmental consequences. Oxford University Press, New York, pp 125–147

    Google Scholar 

  • Parida AK, Das AB (2005) Salt tolerance and salinity effects on plants: a review. Ecotoxicol Environ Saf 60:324–349. https://doi.org/10.1016/j.ecoenv.2004.06.010

    Article  CAS  PubMed  Google Scholar 

  • Parihar P, Singh S, Singh R, Singh VP, Prasad SM (2015) Effect of salinity stress on plants and its tolerance strategies: a review. Environ Sci Poll Res 22(6):4056–4075. https://doi.org/10.1007/s11356-014-3739-1

    Article  CAS  Google Scholar 

  • Parr JF, Papendick RI, Hornick SB, Colacicco D (1989) Use of organic amendments for increasing the productivity of arid lands. Arid Soil Res Rehabil 3:149–170. https://doi.org/10.1080/15324988909381196

    Article  Google Scholar 

  • Patil SB, Balakrishna Reddy PC, Chitgupekar SS, Patil BB, Ravindra GM (2012) Studies on tillage and nutrient management practices in rainfed groundnut. In: Proc 8th Kannada Vijnana Sammelana, 15–17 September 2012. Dharwad, India, pp 90

  • Patil SB, Balakrishna Reddy PC, Chitgupekar SS, Patil BB (2015) Modern tillage and integrated nutrient management practices for improving soil fertility and productivity of groundnut (Arachis hypogaea L.) under rainfed farming system. Int Lett Nat Sci 29:1–12

    Google Scholar 

  • Patil SB, Balakrishna Reddy PC, Sharanappa SBC, Patil BB (2010) Effect of tillage and nutrient management practices on soil properties and yield of rainfed groundnut. Int J Agric Sci 6(2):408–411

    Google Scholar 

  • Patil SB, Reddy PCB, Shankarligappa BC, Patil BB (2010) Effect of various tillage and nutrient management practices on growth and yield attributes of groundnut (Arachis hypogaea L.). Int J Agric Sci 6(2):380–382

    Google Scholar 

  • Patil SB, El-Mourid M, Kumar S, Verma RPS, Sanchez-Garcia M, Moussadek R, El Gharras O (2018a) Conservation agriculture in the drylands of North Africa. In: Proc Seventh International Food Legumes Research Conference, 6–8 May 2018. Marrakesh, Morocco, pp 218

  • Patil SB, Udupa SM, ThamiAlami I, Maalouf F (2018b) Identification of faba bean (Vicia faba L.) genotypes and rhizobial strains for biological nitrogen fixation in under rainfed Mediterranean environments. In: Proc Seventh International Food Legumes Research Conference, 6–8 May 2018. Marrakesh, Morocco, pp 228–230

  • Patil SB (2008) Effect of tillage and nutrient management practices on productivity of groundnut (Arachis hypogaea L.) under rainfed condition. MSc Thesis. University of Agricultural Sciences, Bengaluru

  • Patil SB (2014) Tillage and nutrient management in groundnut. LAP LAMBERT Academic Publishing, Saarbrücken

    Google Scholar 

  • Patra SK, Ray R (2001) Impacts of drainage technology and its alternatives in the coastal Barachouka basin—a case study. Agril Engin Today 25(3–4):20–28

    Google Scholar 

  • Pellegrineschi A, Pulleman M, Sullivan S, Trethowan R, Reynolds M (2005) Using transgenic plants as a source of genetic diversity for breeding greater drought tolerance into wheat. ISB News Report, July 2005

  • Provin T, Pitt JL (2001) Managing soil salinity. Publication E-60:3–12. Texas A&M AgriLife Extension Service, College Station

  • Qadir M, Schubert S, Ghafoor A, Murtaza G (2001) Amelioration strategies for sodic soils: a review. Land Degrad Dev 12:357–386. https://doi.org/10.1002/ldr.458

    Article  Google Scholar 

  • Qadir M, Steffens D, Yan F, Schubert S (2003) Proton release by N2-fixing plant roots: a possible contribution to phytoremediation of calcareous sodic soils. J Plant Nutr Soil Sci 166:14–22. https://doi.org/10.1002/jpln.200390007

    Article  CAS  Google Scholar 

  • Qian P, Schoenau J (2002) Availability of nitrogen in solid manure amendments with different C: N ratios. Can J Soil Sci 82:219–225. https://doi.org/10.4141/S01-018

    Article  Google Scholar 

  • Qingjie W, Caiyun L, Hongwen L, Jin H, Sarker KH, Rasaily R, Zhonghui L, Xiaodong Q, Hui L, Mchugh A (2014) The effects of no-tillage with subsoiling on soil properties and maize yield: 12-year experiment on alkaline soils of Northeast China. Soil Till Res 137:43–49. https://doi.org/10.1016/j.still.2013.11.006

    Article  Google Scholar 

  • Rabie GH, Aboul-Nasr MB, Al-Humiany A (2005) Increased salinity tolerance of cowpea plants by dual inoculation of an arbuscular mycorrhizal fungus Glomus clarum and a nitrogen-fixer Azospirillum brasilense. Mycobiol 33:51–60. https://doi.org/10.4489/MYCO.2005.33.1.051

    Article  CAS  Google Scholar 

  • Rahaman MH, Saifullah ASM, Al Mamun S, Roy S, Yasmeen S (2016) Effects of organic manures on the reclamation of saline soils and growth of Indian spinach (Basella alba). J Global Agric Ecol 5(2):66–72

    Google Scholar 

  • Rahman MA (2008) Nitrogen fixation in salt affected soils by legumes. PhD thesis. University of Agriculture, Faisalabad

  • Rahman MA, Lee SH, Ji HC, Kabir AH, Jones CS, Lee KW (2018) Importance of mineral nutrition for mitigating aluminum toxicity in plants on acidic soils: Current status and opportunities. Int J Mol Sci 19(10):3073. https://doi.org/10.3390/ijms19103073

    Article  CAS  PubMed Central  Google Scholar 

  • Rai R (1991) Effects of soil acidity factors on interaction of chickpea (Cicer arietinum L.) genotypes and rhizobium strains: Symbiotic N-fixation, grain quality and grain yield in acid soils. In: Wright RJ, Baligar VC, Murrmann R (eds) Proceedings 2nd International Symposium on Plant–Soil Interactions at Low pH, 24–29 June 1990. Beckley, West Virginia, pp 619–631

  • Rai R (1992) Effect of acidity factors on aspects of symbiotic N2 fixation of lens culinaris in acid soils. J Gen Appl Microbiol 38:391–406

    CAS  Google Scholar 

  • Rai R, Singh RP (1999) Effect of salt stress on interaction between lentil (Lens culinaris) genotypes and Rhizobium spp. strains: symbiotic N2 fixation in normal and sodic soils. Biol Fertil Soils 29(2):187–195. https://doi.org/10.1007/s003740050543

    Article  CAS  Google Scholar 

  • Rajendran K, Patil S, Kumar S (2015) Phenotyping for problem soils. In: Kumar J, Pratap A, Kumar S (eds) Phenomics in crop plants: trends, options and limitations. Springer, Berlin, pp 129–146

    Google Scholar 

  • Rajendran K, Tester M, Roy SJ (2009) Quantifying the three main components of salinity tolerance in cereals. Plant Cell Environ 32:237–249. https://doi.org/10.1111/j.1365-3040.2008.01916.x

    Article  CAS  PubMed  Google Scholar 

  • Rasmussen WW, Moore DP, Alban AL (1972) Improvement of a solonetzic (slick spot) soil by deep plowing, subsoiling and amendments. Soil Sci Soc Am 36:137–142

    Google Scholar 

  • Redden B, Leonforte T, Ford R, Croser J, Slattery J (2005) Pea (Pisum sativum L.). In: Singh RJ (ed) Genetic resources, chromosome engineering and crop improvement. CRC Press, Baton Rouge, pp 49–83

    Google Scholar 

  • Reddy MP, Vora AB (1986) Changes in pigment composition, hill reaction activity and saccharides metabolism in bajra (Pennisetum typhoides) leaves under NaCl salinity. Photosynthetica 20:50–55

    CAS  Google Scholar 

  • Rengasamy P, Chittleborough D, Helyar K (2003) Root-zone constraints and plant-based solutions for dryland salinity. Plant Soil 257:249–260

    CAS  Google Scholar 

  • Reuler HV, Prins W (1993) The role of plant nutrients for sustainable food crop production in sub-Saharan Africa. Dutch Association Fertilizer Producers (VKP), Leidschedam, p 231

    Google Scholar 

  • Rhoades JD, Kandiah A, Mashali AM (1993) The use of saline waters for crop production. FAO Irrigation and Drainage Paper 48. Food and Agriculture Organization, Rome

  • Ring SM, Fisher RP, Poile GJ, Helyar KR, Conyers MK, Morris SG (1993) Screening species and cultivars for their tolerance to acidic soil conditions. In: Barrow NJ (ed) Plant nutrition—from genetic engineering to field practice. Kluwer Academic Publishers, Dorbrecht, pp 767–770

    Google Scholar 

  • Robbins CW (1986) Sodic calcareous soil reclamation as affected by different amendments and crops. Agron J 78:916–920

    CAS  Google Scholar 

  • Rondon M, Ramirez JA, Lehmann J (2005) Charcoal additions reduce net emissions of greenhouse gases to the atmosphere. In: Proceedings of the 3rd USDA symposium on greenhouse gases and carbon sequestration, 21–24 March 2005, Baltimore, USA

  • Sayre KD, Limon-Ortega A, Govaerts B (2005) Experiences with permanent bed planting systems CIMMYT/Mexico. In: Roth CH, Fischer RA, Meisner CA (eds) Evaluation and performance of permanent raised bed cropping systems in Asia, Australia and Mexico. Proceedings of a workshop held in Griffith, Australia, 1–3 March 2005. ACIAR Proceedings 121, pp 12–25

  • Sabagh EL, Sorour S, Ragab A, Saneoka H, Islam M (2017) The effect of exogenous application of proline and glycine betaine on the nodule activity of soybean under saline condition. J Agric Biotechnol 2:1–5

    Google Scholar 

  • Sadegh-Zadeh F, Seh-Bardan BJ, Samsuri AW, Mohammadi A, Chorom M, Yazdani G (2009) Saline soil reclamation by means of layered mulch. Arid Land Res Manage 23:127–136. https://doi.org/10.1080/15324980902817097

    Article  CAS  Google Scholar 

  • Sadiki M, Rabih K (2001) Selection of chickpea (Cicer arietinum) for yield and symbiotic nitrogen fixation ability under salt stress. Agronomie 21:659–666

    Google Scholar 

  • Sanchez DH, Pieckenstain FL, Escaray F, Erban A, Kraemer UTE, Udvardi MK, Kopka J (2011) Comparative ionomics and metabolomics in extremophile and glycophytic Lotus species under salt stress challenge the metabolic pre-adaptation hypothesis. Plant Cell Environ 34:605–617. https://doi.org/10.1111/j.1365-3040.2010.02266.x

    Article  CAS  PubMed  Google Scholar 

  • Saxena NP, Sheldrake AR (1980) Iron chlorosis in chickpea (Cicer urietirlurn L.) grown on high pH calcareous vertisol. Field Crops Res 3:211–214

    Google Scholar 

  • Schachtman DP, Lagudah ES, Munns R (1992) The expression of salt tolerance from Triticum tauschii in hexaploid wheat. Theor Appl Genet 84:714–719. https://doi.org/10.1007/BF00224174

    Article  CAS  PubMed  Google Scholar 

  • Scheffer-Basso SM, Prior BC (2015) Aluminum toxicity in roots of legume seedlings assessed by topological analysis. Acta Sci Agron 37(1):61–68. https://doi.org/10.4025/actasciagron.v37i1.18362

    Article  CAS  Google Scholar 

  • Schilling RK, Marschner P, Shavrukov Y, Berger B, Tester M, Roy SJ, Plett DC (2014) Expression of the Arabidopsis vacuolar H+- pyrophosphatase gene (AVP1) improves the shoot biomass of transgenic barley and increases grain yield in a saline field. Plant Biotechnol J 12:378–386. https://doi.org/10.1111/pbi.12145

    Article  CAS  PubMed  Google Scholar 

  • Schmutz J, Cannon SB, Schlueter J, Ma J, Mitros T, Nelson W, Hyten DL, Song Q, Thelen JJ, Cheng J, Xu D (2010) Genome sequence of the palaeopolyploid soybean. Nature 463:178–183. https://doi.org/10.1038/nature08670

    Article  CAS  PubMed  Google Scholar 

  • Serraj R, Krishnamurthy L, Kashiwagi J, Kumar J, Crouch CS, JH, (2004) Variation in root traits of chickpea (Cicer arietinum L.) grown under terminal drought. Field Crops Res 88:115–127. https://doi.org/10.1016/j.fcr.2003.12.001

    Article  Google Scholar 

  • Serraj R, Krishnamurthy L, Upadhyaya HD (2004) Screening chickpea mini-core germplasm for tolerance to soil salinity. Int Chickpea Pigeonpea Newslett 11:29–33

    Google Scholar 

  • Seyoum SA (2019) Exploiting genotype x environment x management interactions to enhance maize productivity in Ethiopia. Eur J Agron 103:165–174. https://doi.org/10.1016/j.eja.2018.12.011

    Article  Google Scholar 

  • Shafiq M, Hussain I, Ahmad S, Hussain Z (2001) Spatial variability of soil salinity/sodicity and its effect on maize crop. Pak J Biol Sci 4:193–196

    Google Scholar 

  • Shahid SA, Zaman M, Heng L (2018) Salinity and sodicity adaptation and mitigation options. In: Zaman M, Shahid S, Heng L (eds) Guideline for salinity assessment, mitigation and adaptation using nuclear and related techniques. Springer, Cham. https://doi.org/10.1007/978-3-319-96190-3_3

    Chapter  Google Scholar 

  • Shannon M (1985) Principles and strategies in breeding for higher salt tolerance. Plant Soil 89:227–241. https://doi.org/10.1007/BF02182244

    Article  Google Scholar 

  • Shetty R, Prakash NB (2020) Effect of different biochars on acid soil and growth parameters of rice plants under aluminium toxicity. Sci Rep 10:12249. https://doi.org/10.1038/s41598-020-69262-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi JY, Zou XB, Zhao JW, Mao HP, Wang KL, Chen ZW, Huang XW (2011) Diagnostics of nitrogen deficiency in mini-cucumber plant by near infrared reflectance spectroscopy. Afr J Biotechnol 10:19687–19692. https://doi.org/10.5897/AJB11.557

    Article  Google Scholar 

  • Shi JY, Zou XB, Zhao JW, Wang KL, Chen ZW, Huang XW, Zhang DT, Holmes M (2012) Nondestructive diagnostics of nitrogen deficiency by cucumber leaf chlorophyll distribution map based on near infrared hyperspectral imaging. Sci Hortic 138:190–197. https://doi.org/10.1016/j.scienta.2012.02.024

    Article  CAS  Google Scholar 

  • Shinde VD, Wandre S, Karetha KM (2013) Agronomical practices for management of problematic soils in relation to crop production. Agrobios Newsl 11(12):28–29

    Google Scholar 

  • Singh AK, Singh RA, Sharma SG (2001) Salt stress induced changes in certain organic metabolites during seedling growth in chickpea. Legume Res 24:11–15

    Google Scholar 

  • Singh D, Dikshit HK, Singh R (2012) Variation of aluminium tolerance in lentil (Lens culinaris Medik). Plant Breed 131(6):751–761. https://doi.org/10.1111/j.1439-0523.2012.01999.x

    Article  CAS  Google Scholar 

  • Sirault XRR, James RA, Furbank RT (2009) A new screening method for osmotic component of salinity tolerance in cereals using infrared thermography. Funct Plant Biol 36:970–977. https://doi.org/10.1071/FP09182

    Article  CAS  PubMed  Google Scholar 

  • Siyal AA, Siyal AG, Abro ZA (2002) Salt affected soils: Their identification and reclamation. Pak J Appl Sci 2(5):537–540. https://doi.org/10.3923/jas.2002.537.540

    Article  Google Scholar 

  • Slattery W, Conyers M, Aitken R (1999) Soil pH, aluminium, manganese and lime requirement. In: Peverill KI, Sparrow LA, Reuter DJ (eds) Soil analysis: an interpretation manual. CSIRO Publishing, Melbourne, pp 103–128

  • Slavich PG, Smith KS, Tyerman SD, Walker GR (1999) Water use of grazed salt bush plantations with saline water table. Agric Water Manag 39:169–185. https://doi.org/10.1016/S0378-3774(98)00077-8

    Article  Google Scholar 

  • Smedema LK, Ochs WJ (1998) Needs and prospects for improved drainage in developing countries. Irrig Drain Syst 12:359–369. https://doi.org/10.1023/A:1006101717310

    Article  Google Scholar 

  • Snapp S, Rahmanian M, Batello C (2018) Pulse crops for sustainable farms in sub-Saharan Africa [2018]. Food and Agriculture Organization of the United Nations, Rome

  • Song Y, Zhang C, Ge W, Zhang Y, Burlingame AL, Guo Y (2011) Identification of NaCl stress-responsive apoplastic proteins in rice shoot stems by 2D-DIGE. J Proteomics 74(7):1045–1067. https://doi.org/10.1016/j.jprot.2011.03.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Soussi M, Lluch C, Ocana A (1999) Comparative study of nitrogen fixation and carbon metabolism in two chickpea (Cicer arientinum L.) cultivars under salt stress. J Exp Bot 50:1701–1708. https://doi.org/10.1093/jxb/50.340.1701

    Article  CAS  Google Scholar 

  • Stagnari F, Maggio A, Galieni A, Pisante M (2017) Multiple benefits of legumes for agriculture sustainability: an overview. Chem Biol Technol Agric 4:2. https://doi.org/10.1186/s40538-016-0085-1

    Article  Google Scholar 

  • Story D, Kacira M, Kubota C, Akoglu A, An L (2010) Lettuce calcium deficiency detection with machine vision computed plant features in controlled environments. Comput Electron Agric 74:238–243

    Google Scholar 

  • Sun Y, Yang J, Yao R et al (2020) Biochar and fulvic acid amendments mitigate negative effects of coastal saline soil and improve crop yields in a three year field trial. Sci Rep 10:8946. https://doi.org/10.1038/s41598-020-65730-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tadele M (2020) Impacts of soil acidity on growth performance of faba bean (Vicia faba L.) and management options. Acad Res J Agric Sci Res 8(4):423–431. https://doi.org/10.14662/ARJASR2020.275

    Article  Google Scholar 

  • Tang C, Buirchell B, Longnecker N, Robson A (1993) Variation in the growth of lupin species and genotypes on alkaline soil. Plant Soil 155–156(13–5):16

    Google Scholar 

  • Tang C, Robson A (1993) pH above 6 reduces nodulation in Lupinus species. Plant Soil 152:269–276. https://doi.org/10.1007/BF00029097

    Article  Google Scholar 

  • Tang C, Robson A, Longnecker N, Buirchell B (1995) The growth of Lupinus species on alkaline soils. Aust J Agric Res 46:255–268. https://doi.org/10.1071/AR9950255

    Article  Google Scholar 

  • Tejedor M, Jiménez CC, Díaz F (2003a) Use of volcanic mulch to rehabilitate saline-sodic soils. Soil Sci Soc Am J 67:1856–1861. https://doi.org/10.2136/sssaj2003.1856

    Article  CAS  Google Scholar 

  • Tejedor M, Jiménez CC, Díaz F (2003b) Volcanic material as mulches for water conservation. Geoderma 117:283–205. https://doi.org/10.1016/S0016-7061(03)00129-0

    Article  Google Scholar 

  • Tejedor M, Jiménez CC, Díaz F (2007) Rehabilitation of saline soils by means of volcanic material covering. Eur J Soil Sci 58:490–495. https://doi.org/10.1111/j.1365-2389.2007.00909.x

    Article  CAS  Google Scholar 

  • The C, Calba H, Zonkeng C, Ngonkeu ELM, Adetimirin VO (2006) Response of maize grain yield to changes in acid soil characteristics after soil amendment. Plant Soil 284:45–57. https://doi.org/10.1007/s11104-006-0029-9

    Article  CAS  Google Scholar 

  • Thomas R, Asakawa N, Rondon M, Alarcon H (1997) Nitrogen fixation by three tropical forage legumes in an acid-soil savanna of Colombia. Soil Biol Biochem 29:801–808. https://doi.org/10.1016/S0038-0717(96)00212-X

    Article  CAS  Google Scholar 

  • Tsegay BA, Gebreslessie B (2014) The effect of salinity (NaCl) on germination and early seedling growth of Lathyrus sativus and Pisum sativum var. abyssinicum. Afr J Plant Sci 8(5):225–231

    Google Scholar 

  • Tuyen DD, Chen H, Vu HTT, Hamwieh A, Yamada T, Sato T, Yan Y, Cong H, Shono M, Suenaga K, Xu D (2016) Ncl synchronously regulates Na+, K+, and Cl in soybean and greatly increases the grain yield in saline field conditions. Sci Rep 6:19147. https://doi.org/10.1038/srep19147

    Article  CAS  Google Scholar 

  • Umoetok S, Uko A, Archibong B, Ukeh D, Udo I (2007) Effects of application of inorganic fertilizer and poultry manure on insect pests and yield of soybeans (Glycine max L.) in the rainforest of Nigeria. J Food Agric Environ 5(2):149–152

    Google Scholar 

  • Van Kessel JS, Reeves JB, Meisinger JJ (2000) Nitrogen and carbon mineralization of potential manure components. J Environ Qual 29:1669–1677

    Google Scholar 

  • Varshney RK, Chen W, Li Y, Bharti AK, Saxena RK, Schlueter JA, Donoghue MT, Azam S, Fan G, Whaley AM, Farmer AD (2012) Draft genome sequence of pigeonpea (Cajanus cajan), an orphan legume crop of resource-poor farmers. Nat Biotechnol 30(1):83

    CAS  Google Scholar 

  • Varshney RK, Song C, Saxena RK, Azam S, Yu S, Sharpe AG, Cannon S, Baek J, Rosen BD, Tar’an B, Millan T (2013) Draft genome sequence of chickpea (Cicer arietinum) provides a resource for trait improvement. Nature Biotechnol 31(3):240

    CAS  Google Scholar 

  • Varshney RK, Hiremath PJ, Lekha P, Kashiwagi J, Balaji J, Deokar AA, Vadez V, Xiao Y, Srinivasan R, Gaur PM, Siddique KH, Town CD, Hoisington DA (2009) A comprehensive resource of drought- and salinity-responsive ESTs for gene discovery and marker development in chickpea (Cicer arietinum L.). BMC Genom 10:523. https://doi.org/10.1186/1471-2164-10-523

    Article  CAS  Google Scholar 

  • Velmurugan A, Swarnam T, Ambast S, Kumar N (2016) Managing waterlogging and soil salinity with a permanent raised bed and furrow system in coastal lowlands of humid tropics. Agric Water Manag 168:56–67. https://doi.org/10.1016/j.agwat.2016.01.020

    Article  Google Scholar 

  • Verde BS, Danga BO, Mugwe JN (2013) Effects of manure, lime and mineral P fertilizer on soybean yields and soil fertility in a humic nitisol in the central highlands of Kenya. Int J Agric Sci Res 2(9):283–291

    Google Scholar 

  • Villa-Castorena M, Ulery AL, Catalán-Valencia EA, Remmenga MD (2003) Salinity and nitrogen rate effects on the growth and yield of chile pepper plants. Soil Sci Soc Am J 37:1781–1789

    Google Scholar 

  • Wang L, Butterly CR, Wang Y, Herath HMSK, Xi YG, Xiao XJ (2014) Effect of crop residue biochar on soil acidity amelioration in strongly acidic tea garden soils. Soil Use Manage 30(1):119–128. https://doi.org/10.1111/sum.12096

    Article  CAS  Google Scholar 

  • Wang L, Butterly CR, Yang XL, Wang Y, Herath HMSK, Jiang X (2012) Use of crop residues with alkaline slag to ameliorate soil acidity in an Ultisol. Soil Use Manage 28(2):148–156. https://doi.org/10.1111/j.1475-2743.2012.00396.x

    Article  Google Scholar 

  • Wang X, Wang X, Duan Y, Yin S, Zhang H, Huang L, Kang Z (2013) TaAbc1, a member of Abc1-like family involved in hypersensitive response against the stripe rust fungal pathogen in wheat. PLoS ONE 8(3):e58969. https://doi.org/10.1371/journal.pone.0058969

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • White PJG, Greenwood DJ (2013) Properties and management of cationic elements for crop growth. Russell’s soil conditions and plant growth. Wiley-Blackwell, Oxford

    Google Scholar 

  • Wichern F, Islam MR, Hemkemeyer M, Watson C, Joergensen RG (2020) Organic amendments alleviate salinity effects on soil microorganisms and mineralisation processes in aerobic and anaerobic paddy rice soils. Front Sustain Food Syst 4:30. https://doi.org/10.3389/fsufs.2020.00030

    Article  Google Scholar 

  • Wiwart M, Fordonski G, Zuk-Golaszewska K, Suchowilska E (2009) Early diagnostics of macronutrient deficiencies in three legume species by color image analysis. Comput Electron Agric 65:125–132. https://doi.org/10.1016/j.compag.2008.08.003

    Article  Google Scholar 

  • Wong VNL, Dalal RC, Greene RSB (2009) Carbon dynamics of sodic and saline soils following gypsum and organic material additions: a laboratory incubation. Appl Soil Ecol 41:29–40. https://doi.org/10.1016/j.apsoil.2008.08.006

    Article  Google Scholar 

  • Xiong X, Araya A, Zhang H, Araya K, Teramoto C, Ohmiya K, Liu F, Jia H, Zhang C, Zhu B, Wang N, Neng Q, Yang Q, Li W, Zhang Z (2012) Improvement of salt-affected soils by deep tillage. Part 1: large-scale field tests in a saline soil (Solonchak) region. EAEF 5(1):20–28

    Google Scholar 

  • Xue GP, Way HM, Richardson T, Drenth J, Joyce PA, McIntyre CL (2011) Overexpression of TaNAC69 leads to enhanced transcript levels of stress up-regulated genes and dehydration tolerance in bread wheat. Mol Plant 4(4):697–712. https://doi.org/10.1093/mp/ssr013

    Article  CAS  PubMed  Google Scholar 

  • Yadav GS, Das A, Lal R, Babu S, Meena RS, Patil SB, Saha P, Datta M (2018) Conservation tillage and mulching effects on the adaptive capacity of direct-seeded upland rice (Oryza sativa L.) to alleviate weed and moisture stresses in the North Eastern Himalayan Region of India. Arch Agron Soil Sci. https://doi.org/10.1080/03650340.2018.1423555

    Article  Google Scholar 

  • Yadav GS, Das A, Lal R, Babu S, Datta M, Meena RS, Patil SB, Singh R (2019) Impact of no-till and mulching on soil carbon sequestration under rice (Oryza sativa L.)-rapeseed (Brassica campestris L. var. rapeseed) cropping system in hilly agro-ecosystem of the Eastern Himalayas. India Agric Ecosys Environ 275:81–92. https://doi.org/10.1016/j.agee.2019.02.001

    Article  Google Scholar 

  • Yang W, Feng H, Zhang X, Zhang J, Doonan JH, Batchelor WD, Xiong L, Yan J (2020) Crop phenomics and high-throughput phenotyping: past decades, current challenges, and future perspectives. Mol Plant 13(2):187–214. https://doi.org/10.1016/j.molp.2020.01.008

    Article  CAS  PubMed  Google Scholar 

  • Yasin M, Zahid MA, Ghafoor A, Ahmad Z (2002) Genotypic behavior of lentil (Lens culinaris Medik) towards salinity. In: Ahmad R, Malik KA (eds) Prospects for saline agriculture. Tasks for vegetation science, vol 37. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-0067-2_25

  • Yau SK, Erskine W (2000) Diversity of boron-toxicity tolerance in lentil growth and yield. Genet Resour Crop Evol 47:55–62. https://doi.org/10.1023/A:1008733106108

    Article  Google Scholar 

  • Yavas I, Emek Y, Unay A (2020) Effect of salinity on growth and some photosynthetic pigments of improved population in Puccinellia ciliata (Poaceae). Curr J Appl Sci Tech 39(1):64–70. https://doi.org/10.9734/CJAST/2020/v39i130481

    Article  Google Scholar 

  • Yobterik AC, Timmer VR (1994) Nitrogen mineralization of agro-forestry tree mulches under saline soil conditions. Adv Geo-eco 27:181–194

    Google Scholar 

  • Yupeng W, Yufei L, Zhang Y, Yanmeng B, Zhenjun S (2018) Responses of saline soil properties and cotton growth to different organic amendments. Pedosphere 28:521–529. https://doi.org/10.1016/S1002-0160(17)60464-8

    Article  Google Scholar 

  • Zhang H, Mao X, Wang C, Jing R (2012) Over expression of a common wheat gene TaSnRK2.8 enhances tolerance to drought, salt and low temperature in Arabidopsis. PLoS ONE 5(12):e16041. https://doi.org/10.1371/journal.pone.0016041

    Article  CAS  Google Scholar 

  • Zhang X, Weir B, Wei H, Deng Z, Zhang X, Zhang Y, Xu X, Zhao C, Berger JD, Vance W, Bell R, Jia Y, Li C (2020) Genome-wide identification and transcriptional analyses of MATE transporter genes in root tips of wild Cicer spp under aluminium stress. BioRxiv. https://doi.org/10.1101/2020.04.27.063065

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhao C, Zhang Y, Du J, Guo X, Wen W, Gu S, Wang J, Fan J (2019) Crop phenomics: current status and perspectives. Front Plant Sci 10:714. https://doi.org/10.3389/fpls.2019.00714

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhao D, Wang Z, Yang F, Zhu W, An F, Ma H, Tóth T, Liao X, Yang H, Zhang L (2020) Amendments to saline-sodic soils showed long-term effects on improving growth and yield of rice (Oryza sativa L.). PeerJ 8:e8726. https://doi.org/10.7717/peerj.8726

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The part of the work is supported by the Consultative Group on International Agricultural Research (CGIAR) program (CRP) 3.5 on grain legumes.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Somanagouda B. Patil.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patil, S.B., Rajendran, K., Kumar, J. et al. Adaptation of food legumes to problem soils using integrated approaches. Euphytica 216, 190 (2020). https://doi.org/10.1007/s10681-020-02718-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10681-020-02718-3

Keywords

Navigation