Skip to main content

Advertisement

Log in

Application of XAFS and XRD methods for describing the copper and zinc adsorption characteristics in hydromorphic soils

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

Modeling metal sorption in soils is of great importance to predict the fate of heavy metals and to assess the actual risk driven from pollution. The present study focuses on adsorption of HM ions on two types of hydromorphic soils, including calcaric fluvisols loamic and calcaric fluvic arenosols. The individual and competitive adsorption behaviors of Cu and Zn on soils and soil constituents are evaluated comprehensively. It is established that the sorption processes were best described with the Langmuir model. The results suggest that the calcaric fluvic arenosols are more vulnerable to heavy metal input compared to fluvisols loamic. In all cases, Cu had a higher range of values of the adsorption process parameters relative to Zn. The Zn is likely to be the most critical environmental factor in such soils since it exhibited a decreased sorption under competitive conditions. The retention mechanisms of HM in hydromorphic soils are considered. Based on theoretical calculations of ion activity in soil solutions using solubility diagrams of Cu and Zn compounds, the possibility of precipitation of Cu hydroxide and Zn carbonate in the studied soils is shown. Direct physical methods of nondestructive testing (XAFS and XRD) are applied to experimentally prove the formation of these HM compounds on the surface of montmorillonite, the dominant mineral in hydromorphic soils, and calcite. Thus, the combination of both physicochemical methods and direct physical methods can provide a large amount of real information about the mechanisms of HM retain with solid phases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Agbenin, J. O., & Olojo, L. A. (2004). Competitive adsorption of copper and zinc by a Bt horizon of a savanna Alfisol as affected by pH and selective removal of hydrous oxides and organic matter. Geoderma, 119(1–2), 85–95. https://doi.org/10.1016/S0016-7061(03)00242-8

    Article  CAS  Google Scholar 

  • Burachevskaya, M. V., Minkina, T. M., Mandzhieva, S. S., Bauer, T. V., Chaplygin, V. A., Sushkova, S. N., et al. (2018). Comparing two methods of sequential fractionation in the study of copper compounds in Haplic chernozem under model experimental conditions. Journal of soils and sediments, 18(6), 2379–2386. https://doi.org/10.1007/s11368-017-1711-7

    Article  CAS  Google Scholar 

  • Chernyshov, A. A., Veligzhanin, A. A., & Zubavichus, Y. V. (2009). Structural materials science end-station at the kurchatov synchrotron radiation source: Recent instrumentation upgrades and experimental results. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 603(1–2), 95–98. https://doi.org/10.1016/j.nima.2008.12.167

    Article  CAS  Google Scholar 

  • Code of Federal Regulations (CFR) (Annual Edition) (2019). Title 40: Part 423, Appendix A - Protection of Environment. Accessed 1 July 2019.

  • Davis, J. A., & Leckie, J. O. (1978). Effect of adsorbed complexing ligands on trace metal uptake by hydrous oxides. Environmental science & technology, 12(12), 1309–1315. https://doi.org/10.1021/es60147a006

    Article  CAS  Google Scholar 

  • Ding, S. L., Sun, Y. Z., Yang, C. N., & Xu, B. H. (2009). Removal of copper from aqueous solutions by bentonites and the factors affecting it. Mining Science and Technology (China), 19(4), 489–492. https://doi.org/10.1016/S16745264(09)60091-0

    Article  CAS  Google Scholar 

  • Du, Q., Sun, Z., Forsling, W., & Tang, H. (1999). Complexations in illite-fulvic acid-Cu2+ systems. Water Research., 33(3), 693–706.

    Article  CAS  Google Scholar 

  • Duan, X., Xu, M., Zhou, Y., Yan, Z., Du, Y., Zhang, L., et al. (2016). Effects of soil properties on copper toxicity to earthworm Eisenia fetida in 15 Chinese soils. Chemosphere, 145, 185–192. https://doi.org/10.1016/j.chemosphere.2015.11.099

    Article  CAS  Google Scholar 

  • Elzinga, E. J., & Reeder, R. J. (2002). X-ray absorption spectroscopy study of Cu2+ and Zn2+ adsorption complexes at the calcite surface: Implications for site-specific metal incorporation preferences during calcite crystal growth. Geochimica et Cosmochimica Acta, 66, 3943–3954.

    Article  CAS  Google Scholar 

  • Fisher-Power, L. M., Cheng, T., & Rastghalam, Z. S. (2016). Cu and Zn adsorption to a heterogeneous natural sediment: Influence of leached cations and natural organic matter. Chemosphere, 144, 1973–1979. https://doi.org/10.1016/j.chemosphere.2015.10.109

    Article  CAS  Google Scholar 

  • Furnare, L. J., Strawn, D. G., & Vailionis, A. (2005). Polarized XANES and EXAFS spectroscopic investigation into copper (II) complexes on vermiculite. Geochimica et Cosmochimica Acta, 69(22), 5219–5231. https://doi.org/10.1016/j.gca.2005.06.020

    Article  CAS  Google Scholar 

  • Huang, L., Jin, Q., Tandon, P., Li, A., Shan, A., & Du, J. (2018). High-resolution insight into the competitive adsorption of heavy metals on natural sediment by site energy distribution. Chemosphere, 197, 411–419. https://doi.org/10.1016/j.chemosphere.2018.01.056

    Article  CAS  Google Scholar 

  • ICSD database: https://icsd.products.fiz-karlsruhe.de/

  • ISO 10390 (2005). Soil Quality – Determination of pH.

  • ISO 10693 (1995). Soil Quality – Determination of Carbonate Content – Volumetric Method.

  • ISO 13317–2 (2001). Determination of Particle Size Distribution by Gravitational Liquid Sedimentation Methods – Part 2: Fixed Pipette Method.

  • ISO 14235 (1998). Soil Quality – Determination of Organic Carbon by Sulfochromic Oxidation.

  • ISO NF EN 23470 (2011). Soil Quality – Determination of Effective Cation Exchange Capacity (CEC) and Exchangeable Cations.

  • Jalali, M., & Moharrami, S. (2007). Competitive adsorption of trace elements in calcareous soils of western Iran. Geoderma, 140(1–2), 156–163. https://doi.org/10.1016/j.geoderma.2007.03.016

    Article  CAS  Google Scholar 

  • Janoš, P., Vávrová, J., Herzogová, L., & Pilařová, V. (2010). Effects of inorganic and organic amendments on the mobility (leachability) of heavy metals in contaminated soil: A sequential extraction study. Geoderma, 159(3–4), 335–341. https://doi.org/10.1016/j.geoderma.2010.08.009

    Article  CAS  Google Scholar 

  • Jinren, N., & Weiling, S. (2003). Applicability of the Langmuir equation to copper sorption by loess with high carbonate content. In B. Kronvang (Ed.), The Interactions between Sediments and Water pp (pp. 259–263). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Konstantinova, E., Burachevskaya, M., Mandzhieva, S., Bauer, T., Minkina, T., Chaplygin, V., et al. (2020). Geochemical transformation of soil cover and vegetation in a drained floodplain lake affected by long-term discharge of effluents from rayon industry plants, lower Don River Basin. Southern Russia: Environmental Geochemistry and Health. https://doi.org/10.1007/s10653-020-00683-3

    Book  Google Scholar 

  • Kurochkina, G. N., Pinskii, D. L., Haynos, M., Sokolowska, Z., & Tsesla, I. (2014). Electrokinetic properties of soil minerals and soils modified with polyelectrolytes. Eurasian soil science, 47(7), 699–706. https://doi.org/10.1134/S1064229314070084

    Article  CAS  Google Scholar 

  • Ladonin, D. V. (1997). Specific adsorption of copper and zinc by some soil minerals. Eurasian soil science, 30(12), 1326–1332.

    Google Scholar 

  • Linnik, V. G., Minkina, T. M., Bauer, T. V., Saveliev, A. A., & Mandzhieva, S. S. (2019). Geochemical assessment and spatial analysis of heavy metals pollution around coal-fired power station. Environmental geochemistry and health. https://doi.org/10.1007/s10653-019-00361-z

    Article  Google Scholar 

  • Lur’e, Y. Y. (1979). Analytical chemistry handbookю Moscow: Khimia (in Russian).

  • Madrid, L., & Diaz-Barrientos, E. (1992). Influence of carbonate on the reaction of heavy metals in soils. Journal of Soil Science, 43(4), 709–721. https://doi.org/10.1111/j.1365-2389.1992.tb00170.x

    Article  CAS  Google Scholar 

  • McBride, M. B. (1989). Reactions controlling heavy metal solubility in soils. In B. A. Stewart (Ed.), Advances in soil science (pp. 1–56). New York: Springer.

    Google Scholar 

  • McBride, M. B. (1994). Environmental Chemistry of Soils. New York: Oxford University Press.

    Google Scholar 

  • Mesquita, M. E., & Silva, J. V. (2002). Preliminary study of pH effect in the application of Langmuir and Freundlich isotherms to Cu–Zn competitive adsorption. Geoderma, 106(3–4), 219–234. https://doi.org/10.1016/S00167061(01)00125-2

    Article  CAS  Google Scholar 

  • Minkina, T. M., Nevidomskaya, D. G., Shuvaeva, V. A., Soldatov, A. V., Tsitsuashvili, V. S., Zubavichus, Y. V., et al. (2018). Studying the transformation of Cu2+ ions in soils and mineral phases by the XRD, XAFS, and sequential fractionation methods. Journal of Geochemical Exploration., 184, 365–371. https://doi.org/10.1016/j.gexplo.2016.10.007

    Article  CAS  Google Scholar 

  • Misono, M., Ochiai, E. I., Saito, Y., & Yoneda, Y. (1967). A new dual parameter scale for the strength of Lewis acids and bases with the evaluation of their softness. Journal of Inorganic and Nuclear Chemistry, 29(11), 2685–2691. https://doi.org/10.1016/0022-1902(67)80006-X

    Article  CAS  Google Scholar 

  • Mizutani, K., Fisher-Power, L. M., Shi, Z., & Cheng, T. (2017). Cu and Zn adsorption to a terrestrial sediment: Influence of solid-to-solution ratio. Chemosphere, 175, 341–349. https://doi.org/10.1016/j.chemosphere.2017.02.069

    Article  CAS  Google Scholar 

  • Musso, T. B., Parolo, M. E., Pettinari, G., & Francisca, F. M. (2014). Cu(II) and Zn(II) adsorption capacity of three different clay liner materials. Journal of Environmental Management, 146, 50–58. https://doi.org/10.1016/j.jenvman.2014.07.026

    Article  CAS  Google Scholar 

  • Nevidomskaya, D., Minkina, T., Soldatov, A., Motuzova, G., & Podkovyrina, Yu. (2014). Usage of X-ray absorption spectroscopy and extractive fractionation in studies of the Cu (II) and Zn (II) ions in soils. Eurasian Soil Science., 3(4), 238–324.

    Google Scholar 

  • Nevidomskaya, D. G., Minkina, T. M., Soldatov, A. V., Shuvaeva, V. A., Zubavichus, Ya. V., Podkovyrina , Yu.S. . (2016). Comprehensive study of Pb (II) speciation in soil by X-ray absorption spectroscopy (XANES and EXAFS) and sequential fractionation. Journal of Soils and Sediments, 16, 1183–1192. https://doi.org/10.1007/s11368-015-1198-z

    Article  CAS  Google Scholar 

  • Nriagu, J. (2019). Zinc toxicity in humans Encyclopedia of Environmental Health (2nd ed.). Amsterdam: Elsevier.

    Google Scholar 

  • Panin, M. S., & Siromlya, T. I. (2005). Soil Chemistry-adsorption of copper by soils of the Irtysh river region. Semipalatinsk Oblast. Eurasian Soil Science, 38(4), 364–373.

    Google Scholar 

  • Pinskii, D. L., Minkina, T. M., Bauer, T. V., Nevidomskaya, D. G., Mandzhieva, S. S., & Burachevskaya, M. V. (2018). Copper adsorption by chernozem soils and parent rocks in southern Russia. Geochemistry International, 56(3), 266–275. https://doi.org/10.1134/S0016702918030072

    Article  CAS  Google Scholar 

  • Pinskii, D. L., Minkina, T. M., & Gaponova, Y. I. (2010). Comparative analysis of mono-and polyelement adsorption of copper, lead, and zinc by an ordinary chernozem from nitrate and acetate solutions. Eurasian Soil Science, 43(7), 748–756. https://doi.org/10.1134/S1064229310070045

    Article  Google Scholar 

  • Pinskii, D. L., Minkina, T. M., Mandzhieva, S. S., Fedorov, Y. A., Bauer, T. V., & Nevidomskaya, D. G. (2014). Adsorption features of Cu (II), Pb (II), and Zn (II) by an ordinary chernozem from nitrate, chloride, acetate, and sulfate solutions. Eurasian Soil Science, 47(1), 10–17. https://doi.org/10.1134/S1064229313110069

    Article  CAS  Google Scholar 

  • Pirooty, S., & Ghasemzadeh, M. (2013). Toxic effects of Lead on different organs of the human body. KAUMS Journal (FEYZ), 16(7), 761–762.

    Google Scholar 

  • Plyaskina, O. V., & Ladonin, D. V. (2005). Compounds of heavy metals in granulometric fractions of certain soil types. Moscow University Soil Science Bulletin, 4, 36–43. ((in Russian)).

    Google Scholar 

  • Ponizovskii, A. A., & Mironenko, E. V. (2001). Mechanisms of lead (II) sorption in soils. Eurasian Soil Science, 34, 371–381.

    Google Scholar 

  • Radhakrishnan, K., Sethuraman, L., Panjanathan, R., Natarajan, A., Solaiappan, V., & Thilagaraj, W. R. (2016). Biosorption of heavy metals from actual electroplating wastewater using encapsulated Moringa oleifera beads in fixed bed column. Desalination and Water Treatment, 57(8), 3572–3587. https://doi.org/10.1080/19443994.2014.985725

    Article  CAS  Google Scholar 

  • Saha, U. K., Taniguchi, S., & Sakurai, K. (2002). Simultaneous adsorption of cadmium, zinc, and lead on hydroxyaluminum-and hydroxyaluminosilicate-montmorillonite complexes. Soil Science Society of America Journal, 66(1), 117–128. https://doi.org/10.2136/sssaj2002.1170

    Article  CAS  Google Scholar 

  • Sillen, L. G., & Martell, A. E. (1970). Stability constants of metal-ion complexes. London: The Royal Society of Chemistry.

    Google Scholar 

  • Sipos, P., Németh, T., Kis, V. K., & Mohai, I. (2008). Sorption of copper, zinc and lead on soil mineral phases. Chemosphere, 73(4), 461–469. https://doi.org/10.1016/j.chemosphere.2008.06.046

    Article  CAS  Google Scholar 

  • Sparks, D. L. (2001). Elucidating the fundamental chemistry of soils: past and recent achievements and future frontiers. Geoderma, 100(3–4), 303–319. https://doi.org/10.1016/S0016-7061(01)00026-X

    Article  CAS  Google Scholar 

  • Sposito, G. (1984). The surface chemistry of soils. New York: Oxford University Press.

    Google Scholar 

  • Sposito, G. (1989). The chemistry of soils. New York: Oxford University Press.

    Google Scholar 

  • Vidal, M., Santos, M. J., Abrão, T., Rodríguez, J., & Rigol, A. (2009). Modeling competitive metal sorption in a mineral soil. Geoderma, 149(3–4), 189–198. https://doi.org/10.1016/j.geoderma.2008.11.040

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The Russian Foundation of Basic Research funded this investigation (Projects No. 19-34-60041 and 19-29-05265).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David L. Pinskii.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bauer, T.V., Pinskii, D.L., Minkina, T.M. et al. Application of XAFS and XRD methods for describing the copper and zinc adsorption characteristics in hydromorphic soils. Environ Geochem Health 44, 335–347 (2022). https://doi.org/10.1007/s10653-020-00773-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-020-00773-2

Keywords

Navigation