Hostname: page-component-848d4c4894-m9kch Total loading time: 0 Render date: 2024-05-12T20:42:04.464Z Has data issue: false hasContentIssue false

Improvement of Physical-Chemical and Rheological Properties of Ghardaïa Loess (Southern Algeria) Using Bentonite Clay and Lime

Published online by Cambridge University Press:  01 January 2024

Asmaa Rahmani*
Affiliation:
Modeling and Computational Methods Laboratory, University of Saida Dr. Tahar Moulay, Saida, Algeria
Abdelkrim Hazzab
Affiliation:
Modeling and Computational Methods Laboratory, University of Saida Dr. Tahar Moulay, Saida, Algeria
Hadj Aimer
Affiliation:
Modeling and Computational Methods Laboratory, University of Saida Dr. Tahar Moulay, Saida, Algeria
Abdellah Ghenaim
Affiliation:
Laboratory of Mechanics and Environment ICUBE/ INSA, National Institute of the Applied Sciences, Strasbourg, France
Abdelali Terfous
Affiliation:
Laboratory of Mechanics and Environment ICUBE/ INSA, National Institute of the Applied Sciences, Strasbourg, France
*
*E-mail address of corresponding author: ra.hydrau@outlook.com

Abstract

Loess is a collapsible soil; when it collapses, it can cause significant damage to structures built on it. Improvement in the stability and strength performance of loess is necessary to meet engineering needs. In the present study, the effects on the physical-chemical and rheological characteristics of Ghardaïa loess of adding bentonite and lime (southern Algeria) were examined. Rheological characterization of suspensions was implemented to assess the mechanical sensitivity of the bonds and the structural inter-particle resistance to both the chemical effect and mechanical impact. By analyzing the viscosity results and the evolution of the rheological parameters, the improvements needed in terms of the resistance characteristics of the loess-bentonite and loess-lime mixtures were evaluated and confirmed. The loess physical sensitivity was examined through grain-size distribution and plasticity properties. The pH and electrical conductivity of the mixtures were also used to explore structural modifications. Physical test results showed that introduction of the additives changed the loess texture and improved the plasticity of mixtures. Chemical examination (via change in pH and electrical conductivity) revealed the structural changes in the mixtures studied. Rheological test results showed that increasing concentrations of bentonite and lime improves the mechanical strength and increased the yield stress, consistency, and viscosity of the suspensions. The creation of cement interactions between mixture particles explained the increase in those parameters. Hydration, agglomeration, and inter-particle flocculation induced by the additives promoted these interactions. The experimental results led to the conclusion that bentonite and lime may represent an effective means to improve the performance in terms of preventing loess collapse and to increase its resistance to mechanical impact. The results presented in the present study may provide a geotechnical and rheological working database for the control and treatment of loess collapse and landslides in the region under study. Technical data related to loess may, therefore, be beneficial in terms of civil engineering, public works, hydraulics, and the manufacture of construction materials.

Type
Original Paper
Copyright
Copyright © Clay Minerals Society 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Absi, E., Bonnechère, F., Goguel, J., Kérisel, J., La Rochelle, P., L'Hériteau, G., Panet, M., Rat, M., Salençon, J., & Schlosser, F. (1983). Etude géotechnique et reconnaissance des sols. Revue Française de Géotechnique, 22, 113.Google Scholar
Acevedo, N. I. A., Rocha, M., & Bertolino, L.C. (2017). Mineralogical characterization of natural clays from Brazilian southeast region for industrial applications. Cerâmica, 63, 253262. https://doi.org/10.1590/0366-69132017633662045.CrossRefGoogle Scholar
Alghamdi, A. G., Aly, A. A., Al-Omran, A. M., & Alkhasha, A. (2018). Impact of biochar, bentonite, and compost on physical and chemical characteristics of a sandy soil. Arabian Journal of Geosciences, 11, 670. https://doi.org/10.1007/s12517-018-3939-y.CrossRefGoogle Scholar
Al-Mukhtar, M., Khattab, S., & Alcover, J. F. (2012). Microstructure and geotechnical properties of lime-treated expansive clayey soil. Engineering Geology, 139–140, 1727. https://doi.org/10.1016/j.enggeo.2012.04.004.CrossRefGoogle Scholar
Al-Swaidani, A., Hammoud, I., & Meziab, A. (2016). Effect of adding natural pozzolana on geotechnical properties of lime-stabilized clayey soil. Journal of Rock Mechanics and Geotechnical Engineering, 8, 714725. https://doi.org/10.1016/j.jrmge.2016.04.002.CrossRefGoogle Scholar
Amadi, A. A., & Okeiyi, A. (2017). Use of quick and hydrated lime in stabilization of lateritic soil: Comparative analysis of laboratory data. International Journal of Geo-Engineering, 8, 3. https://doi.org/10.1186/s40703-017-0041-3.CrossRefGoogle Scholar
Arabi, M. & Wild, S. (1989). Property changes induced in clay soils when using lime stabilization. Municipal Engineer, 6. https://trid.trb.org/view/307600.Google Scholar
ASTM (2007). Standard test method for pH of soils. D4972, West Conshohocken, Pennsylvania, USA.Google Scholar
Babu, N., & Poulose, E. (2018). Effect of lime on soil properties: a review. International Research Journal of Engineering and Technology, 5, 5.Google Scholar
Barnes, H. A., Hutton, J. F., & Walters, K. (1989). An Introduction to Rheology. Amsterdam: Elsevier.Google Scholar
Bell, F. G. (1996). Lime stabilization of clay minerals and soils. Engineering Geology, 42, 223237. https://doi.org/10.1016/0013-7952(96)00028-2.CrossRefGoogle Scholar
Bellil, S., Abbeche, K., & Bahloul, O. (2018). Treatment of a collapsible soil using a bentonite–cement mixture. Studia Geotechnica et Mechanica, 40. https://doi.org/10.2478/sgem-2018-0042.CrossRefGoogle Scholar
Benedini, M., & Margaritora, G. (1974). Rhéologie des mélanges d'eau et d'argile. Rheologica Acta, 13, 289295. https://doi.org/10.1007/BF01520891.CrossRefGoogle Scholar
Benyounes, K., Mellak, A., & Benchabane, A. (2010). The effect of carboxymethylcellulose and xanthan on the rheology of bentonite suspensions. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 32, 16341643. https://doi.org/10.1080/15567030902842244.CrossRefGoogle Scholar
Bessaim, M. M., Bessaim, A., Missoum, H., & Bendani, K. (2018). Effect of quick lime on physicochemical properties of clay soil. MATEC Web of Conferences, 149, 02065. https://doi.org/10.1051/matecconf/201814902065.CrossRefGoogle Scholar
Calik, U., & Sadoglu, E. (2014). Engineering properties of expansive clayey soil stabilized with lime and perlite. Geomechanics and Engineering, 6, 403418. https://doi.org/10.12989/gae.2014.6.4.403.CrossRefGoogle Scholar
Chen, H., Li, H., Fu, R., & Yuan, X. (2019). Dynamic behaviour and damage characteristics of loess in Xianyang, China. Bulletin of Engineering Geology and the Environment. https://doi.org/10.1007/s10064-019-01709-6.CrossRefGoogle Scholar
Cheng, D. C.-H. (1980). Viscosity-concentration equations and flow curves for suspensions. Chemistry and Industry, 17, 403406.Google Scholar
Cherian, C., & Arnepalli, D. N. (2013). Role of lime diffusion in stabilization of fine grained soils: A critical review. Chennai, India: Fourth Indian Young Geotechnical Engineer's Conference.Google Scholar
Coude-Gaussen, G. (1987). The perisaharan loess: Sedimentological characterization and paleoclimatical significance. GeoJournal, 15, 177183. https://doi.org/10.1007/BF00157945.CrossRefGoogle Scholar
Dash, S. K., & Hussain, M. (2012). Lime stabilization of soils: Reappraisal. Journal of Materials in Civil Engineering, 24, 707714. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000431.CrossRefGoogle Scholar
Delvoie, S. (2017). Caractérisation multiéchelle du loess de Hesbaye (Belgique) par une approche couplée géologique et géotechnique. Thèse de Doctorat, Université de Liège, Liège, Belgium. https://orbi.uliege.be/handle/2268/217359.Google Scholar
Dhar, S. & Hussain, M. (2019). The strength and microstructural behavior of lime stabilized subgrade soil in road construction. International Journal of Geotechnical Engineering, 1–13. https://doi.org/10.1080/19386362.2019.1598623.CrossRefGoogle Scholar
Dreux, G., & Festa, J. (1998). Nouveau guide du béton et de ses constituants. 8ème édition, Eyrolles, Paris.Google Scholar
Duan, Z. & Peng, J. (2016). An experimental study on creep characteristics of Q2 loess in the Guanzhong area of China. DEStech Transactions on Engineering and Technology Research (iceta). https://doi.org/10.12783/dtetr/iceta2016/7101.CrossRefGoogle Scholar
El Mohtar, C. S., Bobet, A., Santagata, M. C., Drnevich, V. P., & Johnston, C. T. (2013). Liquefaction mitigation using bentonite suspensions. Journal of Geotechnical and Geoenvironmental Engineering, 139, 13691380. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000865.CrossRefGoogle Scholar
Elgamouz, A., Tijani, N., Shehadi, I., Hasan, K., & Kawam, M. (2019). Characterization of the firing behaviour of an illite-kaolinite clay mineral and its potential use as membrane support. Heliyon, 5, e02281. https://doi.org/10.1016/j.heliyon.2019.e02281.Google ScholarPubMed
Elmashad, M. M. A. (2018). Improving the geotechnical behavior of sand through cohesive admixtures. Water Science, 32, 6778. https://doi.org/10.1016/j.wsj.2018.03.001.CrossRefGoogle Scholar
Evstatiev, D. (1988). Loess improvement methods. Engineering Geology, 25, 341366. https://doi.org/10.1016/0013-7952(88)90036-1.CrossRefGoogle Scholar
Firoozi, A. A., Olgun, C. G., Firoozi, A. A., & Baghini, M. S. (2017). Fundamentals of soil stabilization. International Journal of Geo-Engineering, 8, 26. https://doi.org/10.1186/s40703-017-0064-9.CrossRefGoogle Scholar
Fuenkajorn, K., & Daemen, J. J. (1996). Sealing of boreholes and underground excavations. In: Rock. Springer, The Netherlands. https://doi.org/10.1007/978-94-009-1505-3.Google Scholar
Gamal, H., Elkatatny, S., Basfar, S., & Al-Majed, A. (2019). Effect of pH on rheological and filtration properties of water-based drilling fluid based on bentonite. Sustainability, 11, 6714. https://doi.org/10.3390/su11236714.CrossRefGoogle Scholar
Gao, Y., Qian, H., Li, X., Chen, J., & Jia, H. (2018). Effects of lime treatment on the hydraulic conductivity and microstructure of loess. Environmental Earth Sciences, 77, 529. https://doi.org/10.1007/s12665-018-7715-9.CrossRefGoogle Scholar
Ghobadi, M. H., Abdilor, Y., & Babazadeh, R. (2014). Stabilization of clay soils using lime and effect of pH variations on shear strength parameters. Bulletin of Engineering Geology and the Environment, 73, 611619. https://doi.org/10.1007/s10064-013-0563-7.CrossRefGoogle Scholar
Gibbs, H. J., & Holland, W. Y. (1960). Petrographic and engineering properties of loess. US Bureau of Reclamation, Engineering Monograph, 28, 37.Google Scholar
Grim, R., & Guven, N. (1978). Bentonite: Geology, Mineralogy, Properties, and Uses. New York: Elsevier Science Publishing.Google Scholar
Hassan, A. Z. A., & Mahmoud, A. W. M. (2013). The combined effect of bentonite and natural zeolite on sandy soil properties and productivity of some crops. Topclass Journal of Agricultural Research, 1, 2228.Google Scholar
Jefferson, I., Rogers, C., Evstatiev, D., & Karastanev, D. (2005). Treatment of metastable loess soils: Lessons from Eastern Europe. Pp. 723762 in: Elsevier Geo-Engineering Book Series 5. Elsevier, The Netherlands. https://doi.org/10.1016/S1571-9960(05)80028-X.Google Scholar
Karam, J. P. (2006). Etude de la rhéologie des loess du Nord de la France - Application à l'évaluation de leur risque de liquéfaction. PhD thesis, Ecole des Ponts Paris, France. https://pastel.archives-ouvertes.fr/pastel-00002185.Google Scholar
Kaufhold, S., Dohrmann, R., Koch, D., & Houben, G. (2008). The pH of aqueous bentonite suspensions. Clays and Clay Minerals, 56, 338343. https://doi.org/10.1346/CCMN.2008.0560304.CrossRefGoogle Scholar
Kelessidis, V. C., & Maglione, R. (2008). Yield stress of water–bentonite dispersions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 318, 217226. https://doi.org/10.1016/j.colsurfa.2007.12.050.CrossRefGoogle Scholar
Khaidapova, D., Milanovskiy, E., & Shein, E. (2015). Rheological properties of different minerals and clay soils. Eurasian Journal of Soil Science, 4, 198202. https://doi.org/10.18393/ejss.2015.3.198-202.Google Scholar
Kong, R., Zhang, F., Wang, G., & Peng, J. (2018). Stabilization of loess using nano-SiO2. Materials, 11. https://doi.org/10.3390/ma11061014.CrossRefGoogle Scholar
Kou, N. Y., Tang, X. W., Zhang, Q. F., Chen, Y. M., & Tang, Q. (2010). Effects of surface-active agents on mechanical behaviors of loess. in: Advances in Environmental Geotechnics (Chen, Y., Zhan, L., and Tang, X., editors). Springer. Heidelberg, Berlin. https://doi.org/10.1007/978-3-642-04460-198.Google Scholar
Li, Y. (2015). Rheological model of loess and its application to excavation of pit. Electronic Journal of Geotechnical Engineering, 20, 18691876.Google Scholar
Li, P., Vanapalli, S., & Li, T. (2016). Review of collapse triggering mechanism of collapsible soils due to wetting. Journal of Rock Mechanics and Geotechnical Engineering, 8, 256274. https://doi.org/10.1016/j.jrmge.2015.12.002.CrossRefGoogle Scholar
Lima, A. T., Gustav Loch, J. P., & Kleingeld, P. J. (2010). Bentonite electrical conductivity: A model based on series–parallel transport. Journal of Applied Electrochemistry, 40, 10611068. https://doi.org/10.1007/s10800-009-0060-7.CrossRefGoogle Scholar
Little, D. N. (1999). Evaluation of Structural Properties of Lime Stabilized Soils and Aggregates. Prepared for The National Lime Association: Arlington, Virginia, USA.Google Scholar
Luckham, P. F., & Rossi, S. (1999). The colloidal and rheological properties of bentonite suspensions. Advances in Colloid and Interface Science, 82, 4392. https://doi.org/10.1016/S0001-8686(99)00005-6.CrossRefGoogle Scholar
Ma, H., & Ma, Q. (2019). Experimental studies on the mechanical properties of loess stabilized with sodium carboxymethyl cellulose. Advances in Materials Science and Engineering. https://doi.org/10.1155/2019/9375685.CrossRefGoogle Scholar
Maciel, G. F., Santos, H. K., & Ferreira, F. O. (2009). Rheological analysis of water clay compositions in order to investigate mudflows developing in canals. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 31, 6474. https://doi.org/10.1590/S1678-58782009000100010.CrossRefGoogle Scholar
Malfoy, C. A., Pantet, P. M., & Righi, D. (2003). Effects of the nature of the exchangeable cation and clay concentration on the rheological properties of smectite suspensions. Clays and Clay Minerals, 51, 656663. https://doi.org/10.1346/CCMN.2003.0510608.CrossRefGoogle Scholar
Marschalko, M., Yilmaz, I., Fojtova, L., Lamich, D., & Bednarik, M. (2013). Properties of the loess sediments in Ostrava Region (Czech Republic) and comparison with some other loess sediments. The Scientific World Journal. https://doi.org/10.1155/2013/529431.CrossRefGoogle Scholar
Moreno, R. (2001). Rheology. Pp. 81928196 in: Encyclopedia of Materials: Science and Technology (Jürgen Buschow, K. H., Cahn, Robert W., Flemings, Merton C., Ilschner, Bernhard, Kramer, Edward J., Mahajan, Subhash, and Veyssière, Patrick, editors). Elsevier, Oxford, UK. https://doi.org/10.1016/B0-08-043152-6/01468-6.CrossRefGoogle Scholar
Muhs, D. R. (2018). The geochemistry of loess: Asian and North American deposits compared. Journal of Asian Earth Sciences, 155, 81115. https://doi.org/10.1016/j.jseaes.2017.10.032.CrossRefGoogle Scholar
Pei, X., Zhang, F., Wu, W., & Liang, S. (2015). Physicochemical and index properties of loess stabilized with lime and fly ash piles. Applied Clay Science, 114, 7784. https://doi.org/10.1016/j.clay.2015.05.007.CrossRefGoogle Scholar
Phillips, C. J., & Davies, T. R. H. (1991). Determining rheological parameters of debris flow material. Geomorphology, 4, 101110. https://doi.org/10.1016/0169-555X(91)90022-3.CrossRefGoogle Scholar
Phoak, S., Luo, Y.-S., Li, S. N., & Yin, Q. (2019). Influence of submergence on stabilization of loess in Shaanxi Province by adding fly ash. Applied Sciences, 9, 68. https://doi.org/10.3390/app9010068.CrossRefGoogle Scholar
Saba, S., Barnichon, J.D., Cui, Y. J., Tang, A. M., & Delage, P. (2014). Microstructure and anisotropic swelling behaviour of compacted bentonite/sand mixture. Journal of Rock Mechanics and Geotechnical Engineering, 6, 126132. https://doi.org/10.1016/j.jrmge.2014.01.006.CrossRefGoogle Scholar
Satje, A., & Nelson, P. (2009). Bentonite treatments can improve the nutrient and water holding capacity of sugarcane soils in the wet tropics. Proceedings of the Australian Society of Sugar Cane Technologists, 31, 166176.Google Scholar
Semalulu, O., Magunda, M., & Mubiru, D. N. (2016). Amelioration of sandy soils in drought stricken areas through use of Ca-bentonite. Uganda Journal of Agricultural Sciences, 16, 195. https://doi.org/10.4314/ujas.v16i2.5.CrossRefGoogle Scholar
Szegi, T., Gál, A., Michéli, E., Tombácz, E. (2004). Quantitative rheological parameters for predicting soil deformation. Eurosoil Conference Freiburg, CD ROM.Google Scholar
Szegi, T., Tombácz, E., Czibulya, Z., Akagi, J., & Zsolnay, A. (2006). Quantitative rheological indicators for soil physical degradation. Agrokémia És Talajtan, 55, 6978. https://doi.org/10.1556/Agrokem.55.2006.1.8.CrossRefGoogle Scholar
Tabarsa, A., Latifi, N., Meehan, C. L., & Manahiloh, K. N. (2018). Laboratory Investigation and field evaluation of loess improvement using nanoclay – A sustainable material for construction. Construction and Building Materials, 158, 454463. https://doi.org/10.1016/j.conbuildmat.2017.09.096.CrossRefGoogle Scholar
Tang, Y. G., & Kung, G. T.-C. (2010). Investigating the effect of soil models on deformations caused by braced excavations through an inverse-analysis technique. Computers and Geotechnics, 37, 769780. ttps://doi.org/10.1016/j.compgeo.2010.06.003.CrossRefGoogle Scholar
Vitale, E., Deneele, D., Paris, M., & Russo, G. (2017). Multi-scale analysis and time evolution of pozzolanic activity of lime treated clays. Applied Clay Science, 141, 3645. https://doi.org/10.1016/j.clay.2017.02.013.CrossRefGoogle Scholar
Wayal, A. S., Ameta, N. K., & Purohit, D. G. M. (2012). Dune sand stabilization using bentonite and lime. Journal of Engineering Research and Studies, III, 5860.Google Scholar
Yan, F., & Yue, X. (2019). Analysis on creep characteristics and microscopic mechanism of loess Q2. Journal of Engineering Science and Technology Review, 12, 130135. https://doi.org/10.25103/jestr.123.18.Google Scholar
Yssaad, H. R., & Belkhodja, M. (2007). The effects of bentonite on the physic chemical characteristics of sandy soils in Algeria. Journal of Applied Sciences, 7, 26412645. https://doi.org/10.3923/jas.2007.2641.2645.CrossRefGoogle Scholar
Yuan, Z. X., & Wang, L. M. (2009). Collapsibility and seismic settlement of loess. Engineering Geology, 105, 119123. https://doi.org/10.1016/j.enggeo.2008.12.002.CrossRefGoogle Scholar
Zhang, C., Jiang, G., Su, L., & Zhou, G. (2017). Effect of cement on the stabilization of loess. Journal of Mountain Science, 14, 23252336. https://doi.org/10.1007/s11629-017-4365-4.CrossRefGoogle Scholar
Zhang, W., Sun, Y., Chen, W., Song, Y., & Zhang, J. (2019). Collapsibility, composition, and microfabric of the coastal zone loess around the Bohai Sea, China. Engineering Geology, 257, 105142. https://doi.org/10.1016/j.enggeo.2019.05.019.CrossRefGoogle Scholar
Zhang, Y., John, L. D., Bora, C., & Kyle, B. I. (2020). Effect of temperature on pH, conductivity, and strength of lime-stabilized soil. Journal of Materials in Civil Engineering, 32, 04019380. https://doi.org/10.1061/(ASCE)MT.1943-5533.0003062.CrossRefGoogle Scholar
Zhu, G., Zhu, L., & Yu, C. (2017). Rheological properties of soil: A review. IOP Conference Series: Earth and Environmental Science, 64, 012011. https://doi.org/10.1088/1755-1315/64/1/012011.Google Scholar