Skip to main content
Log in

Manifestation of descent symmetry phenomena in tetrahedral structure of M42+ (M = P, As, Sb) analogues

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

Manifestation of descent symmetry phenomena induced by pseudo Jahn–Teller interactions is reported for the P4 dicationic tetrahedral structure and its As4 and Sb4 analogues. The symmetry descent phenomena in the dicationic tetrahedral structure for the series is caused by the pseudo Jahn–Teller effect (PJTE) where the unstable (high Td symmetry) configuration distorts to the equilibrium geometry with a lower, C2 symmetry. State averaging six low-lying electronic states via CASSCF(8,8)/cc-pVTZ–(PP) computations determined the adiabatic potential energy surfaces along the distorting normal coordinate. The (E(I) + A1 + E(II)) ⊗ e for the M42+ (M = P, As, Sb) series has been formulated accordingly. Subsequently, the coupling constants were estimated by fitting energies obtained from the PJTE equations. Moreover, to understand how removing or adding electrons affects the PJTE in the M42+ series, electronic configurations were analysed for M4(0,2+,4+) analogues in which the M4(0,4+) are stable in their tetrahedral structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Kutzelnigg W 1984 Angew. Chem. Int. Ed. 23 272

    Google Scholar 

  2. Ahlrichs R, Brode S and Ehrhardt C 1985 J. Am. Chem. Soc. 107 7260

    CAS  Google Scholar 

  3. Bock H and Muller H 1984 Inorg. Chem. 23 4365

    CAS  Google Scholar 

  4. Schmidt M W and Gordon M S 1985 Inorg. Chem. 24 4503

    CAS  Google Scholar 

  5. Karton A and Martin J M 2007 Mol. Phys. 105 2499

    CAS  Google Scholar 

  6. Wang L P, Tofan D, Chen J, Van Voorhis T and Cummins C C 2013 RSC Adv. 3 23166

    CAS  Google Scholar 

  7. Oakley M S, Bao J, Klobukowski M, Truhlar D G and Gagliardi L 2018 J. Phys. Chem. A 122 5742

    CAS  Google Scholar 

  8. Corbridge D E C 1974 Structural chemistry of phosphorus (The Netherlands: Elsevier Scientific Publishing Company)

    Google Scholar 

  9. Wang L S, Niu B, Lee Y T, Shirley D A, Ghelichkhani E and Grant E R 1990 J. Chem. Phys. 93 6318

    CAS  Google Scholar 

  10. Wang L S, Niu B, Lee Y T, Shirley D A, Ghelichkhani E and Grant E R 1990 J. Chem. Phys. 93 6327

    CAS  Google Scholar 

  11. Meiswinkel R and Koppel H 1993 Chem. Phys. Lett. 201 449

    CAS  Google Scholar 

  12. Englman R 1972 The Jahn–Teller effect in molecules and crystals (New York: Wiley Interscience)

    Google Scholar 

  13. Bersuker I B 2006 The Jahn–Teller effect (Cambridge: Cambridge University Press)

    Google Scholar 

  14. Applegate B E, Barckholtz T A and Miller T A 2003 Chem. Soc. Rev. 32 38

    CAS  Google Scholar 

  15. Bhattacharyya S, Opalka D and Domcke W 2015 Chem. Phys. 460 51

    CAS  Google Scholar 

  16. Bersuker I B 2013Chem. Rev. 113 1351

    CAS  Google Scholar 

  17. Liu Y, Bersuker I B and Boggs J E 2013 Chem. Phys. 417 26

    CAS  Google Scholar 

  18. Liu Y, Bersuker I B, Garcia-Fernandez P and Boggs J E 2012 J. Phys. Chem. A 116 7564

    CAS  Google Scholar 

  19. Ilkhani A R and Monajjemi M 2015 Comput. Theor. Chem. 1074 19

    CAS  Google Scholar 

  20. Ilkhani A R 2017 Quim. Nova 40 491

    CAS  Google Scholar 

  21. Hermoso W, Ilkhani A R and Bersuker I B 2014 Comput. Theor. Chem. 1049 109

    CAS  Google Scholar 

  22. Ilkhani A R, Hermoso W and Bersuker I B 2015 Chem. Phys. 460 75

    CAS  Google Scholar 

  23. Ilkhani A R 2015 J. Theor. Comput. Chem. 6 1550045

    Google Scholar 

  24. Gorinchoy N N, Arsene I and Bersuker I B 2018 J. Phys. Conf. Ser. 1148 012005

    Google Scholar 

  25. Ilkhani A R 2017 Russ. J. Phys. Chem. A 91 1743

    CAS  Google Scholar 

  26. Ilkhani A R 2019 J. Mol. Model. 25 8

    Google Scholar 

  27. Ilkhani A R 2019 Struct. Chem. 30 303

    CAS  Google Scholar 

  28. Ilkhani A R 2019 Chem. Pap. 73 85

    CAS  Google Scholar 

  29. Ilkhani A R 2019 J. Chem. Sci. 131 37

    Google Scholar 

  30. Bhattacharyya K, Surendran A, Chowdhury C and Datta A 2016 Phys. Chem. Chem. Phys. 18 31160

    CAS  Google Scholar 

  31. Jose D and Datta A 2011 Phys. Chem. Chem. Phys. 13 7304

    CAS  Google Scholar 

  32. Ilkhani A R, Gorinchoy N N and Bersuker I B 2015 Chem. Phys. 460 106

    CAS  Google Scholar 

  33. Chowdhury C, Jahiruddin S and Datta A 2016 J. Phys. Chem. Lett. 7 1288

    CAS  Google Scholar 

  34. Pratik S Md, Chowdhury C, Bhattacharjee R, Jahiruddin Sk and Datta A 2015 Chem. Phys. 460 101

    Google Scholar 

  35. Ivanov A S, Miller E, Boldyrev A I, Kameoka Y, Sato T and Tanaka K 2015 J. Phys. Chem. C 119 12008

    CAS  Google Scholar 

  36. Ilkhani A R 2015 J. Mol. Struct. 1098 21

    CAS  Google Scholar 

  37. Jose D and Datta A 2012 J. Phys. Chem. C 116 24639

    CAS  Google Scholar 

  38. Ivanov A S, Bozhenko K V and Boldyrev A I 2012 Inorg. Chem. 51 8868

    CAS  Google Scholar 

  39. Sergeeva A P and Boldyrev A I 2010 Organometallics 29 3951

    CAS  Google Scholar 

  40. Pratik S Md and Datta A 2015 J. Phys. Chem. C 119 15770

    CAS  Google Scholar 

  41. Hu Y, Chen Z, Zhang H, Li M, Hou Z, Luo X et al 2017 Drug Deliv. 24 1295

    CAS  Google Scholar 

  42. Polly R, Werner H J, Manby F R and Knowles P J 2004 Mol. Phys. 102 2311

    CAS  Google Scholar 

  43. Werner H J and Meyer W 1981 J. Chem. Phys. 74 5794

    CAS  Google Scholar 

  44. Werner H J and Meyer W 1980 J. Chem. Phys. 73 2342

    CAS  Google Scholar 

  45. Werner H J and Knowles P J 1985 J. Chem. Phys. 82 5053

    CAS  Google Scholar 

  46. Wilson A K, Woon D E, Peterson K A and Dunning T H 1999 J. Chem. Phys. 110 7667

    CAS  Google Scholar 

  47. Woon D E and Dunning T H 1993 J. Chem. Phys. 98 1358

    CAS  Google Scholar 

  48. Dunning T H 1989 J. Chem. Phys. 90 1007

    CAS  Google Scholar 

  49. Dolg M 1996 J. Chem. Phys. 104 4061

    CAS  Google Scholar 

  50. Dolg M 1996 Chem. Phys. Lett. 250 75

    CAS  Google Scholar 

  51. Peterson K A 2003 J. Chem. Phys. 119 11099

    CAS  Google Scholar 

  52. Werner H J, Knowles P J, Manby F R and Schutz M 2015 MOLPRO, version 2015.1.22, a package of ab initio programs. Available: https://www.molpro.net (accessed on January 2015)

Download references

Acknowledgements

The corresponding author wishes to appreciate the Yazd Branch, Islamic Azad University, for their financial support of this research. All calculations were enabled in part with support from Westgrid (www.westgrid.ca) and Compute/Calcul Canada (www.computecanada.ca).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Reza Ilkhani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ilkhani, A.R., Hermoso, W. Manifestation of descent symmetry phenomena in tetrahedral structure of M42+ (M = P, As, Sb) analogues. Bull Mater Sci 43, 293 (2020). https://doi.org/10.1007/s12034-020-02258-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-020-02258-5

Keywords

Navigation