Skip to main content

Advertisement

Log in

Impedance analysis of zirconium-doped lithium manganese oxide

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

In recent days, portable electronic devices are indispensable to improve the standard of living, which led to the demand for energy storage devices with good performance. Among the storage devices, rechargeable lithium ion batteries play a vital role due to the good electrical conductivity. In this study, impedance and electrical performance were studied for zirconium-doped Li4Mn5O12 at different concentrations (0.1, 0.2, 0.3 and 0.4 mol). The structural and morphological properties of the material were studied by powder X-ray diffractometer spectra and scanning electron microscopy analysis. Morphological properties exhibit the combination of polyhedral and needle-shaped particles, which were in micron size. The Nyquist plot indicates the absence of grain boundary effect and explained the bulk property, i.e., the negative temperature co-efficient of resistance property of the material. Zirconium-doped lithium manganese oxide (0.2 mol) exhibits good electrical property than other concentrations. Maximum conductivity was (1.4 × 10−5 S cm−1) observed at 160°C for the same. These results suggested that 0.2 mol of zirconium will enhance the electrical property of lithium manganese oxide (Li4Mn5O12).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Alie C, Calberg C, Paez C, Liquet D, Eskenazi D, Heinrichs B et al 2018 J. Power Sources 403 173

    Article  CAS  Google Scholar 

  2. Kim J and Manthiram A 1998 J. Electrochem. Soc. 145 L53

    Article  CAS  Google Scholar 

  3. Zhao Y, Xu X, Lai Q, Hao Y, Wang L and Lin Z 2010 J. Solid State Electrochem. 14 1509

    Article  CAS  Google Scholar 

  4. Choi W and Manthiram A 2007 Solid State Ion. 178 1541

    Article  CAS  Google Scholar 

  5. Zhao Y, Lai Q, Zeng H, Hao Y and Lin Z 2013 Ionics 19 1483

    Article  CAS  Google Scholar 

  6. Shin Y and Manthiram A 2003 Electrochim. Acta 48 3583

    Article  CAS  Google Scholar 

  7. Zhang Y C, Wang H, Xu H Y, Wang B, Yan H, Ahniyaz A et al 2003 Solid State Ion. 158 113

    Article  CAS  Google Scholar 

  8. Liu Y, Liu G, Xu H, Zheng Y, Huang Y, Li S et al 2019 Chem. Commun. 55 8118

    Article  CAS  Google Scholar 

  9. Robertson A D, Armstrong A R and Bruce P G 2001 J. Power Sources 97–98 332

    Article  Google Scholar 

  10. Jiang Y P, Xie J, Cao G S and Zhao X B 2010 Electrochim. Acta 56 412

    Article  CAS  Google Scholar 

  11. Yang T, Chen D, Jiao X and Duan Y 2007 Chem. Commun. 20 2072

    Google Scholar 

  12. Sharmila S, Janarthanan B and Chandrasekaran J 2016 Ionics 22 1567

    Article  CAS  Google Scholar 

  13. Sharmila S, Senthilkumar B, Nithya V D, Vediappan K, Lee C W and Selvan R K 2013 J. Phys. Chem. Solids 74 1515

    Article  CAS  Google Scholar 

  14. Bai Y-J, Gong C, Qi Y-X, Lun N and Feng J 2012 J. Mater. Chem. 22 19054

    Article  CAS  Google Scholar 

  15. Wang W, Jiang B, Xiong W, Wang Z and Jiao S 2013 Electrochim. Acta 114 198

    Article  CAS  Google Scholar 

  16. Cheng C, Liu H, Xu X, Cao H and Shi L 2014 Electrochim. Acta 120 226

    Article  CAS  Google Scholar 

  17. Li X, Tang S, Qu M, Huang P, Li W and Yu Z 2014 J. Alloys Compd. 588 17

    Article  CAS  Google Scholar 

  18. Yi T-F, Yang S-Y, Li X-Y, Yao J-H, Zhu Y-R and Zhu R-S 2014 J. Power Sources 246 505

    Article  CAS  Google Scholar 

  19. Barik S K, Choudhary R N P and Singh A K 2011 Adv. Mater. Lett. 2 419

    Article  CAS  Google Scholar 

  20. Padhee R, Das P R, Parida B N, Behera S and Choudhary R N P 2013 Curr. Appl. Phys. 13 1014

    Article  Google Scholar 

  21. Jonscher A K 1977 Nature 267 673

    Article  CAS  Google Scholar 

  22. Adnan S B R S and Mohamed N S 2014 Solid State Ion. 262 559

    Article  CAS  Google Scholar 

  23. Adnan S B R S and Mohamed N S 2012 Int. J. Electrochem. Sci. 7 9844

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sharmila Saminathan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vedhanayagam, S.M., Saminathan, S., Janarthanan, B. et al. Impedance analysis of zirconium-doped lithium manganese oxide. Bull Mater Sci 43, 294 (2020). https://doi.org/10.1007/s12034-020-02257-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-020-02257-6

Keywords

Navigation