Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter (O) November 10, 2020

Automated synthesis of the 16α-[18F]fluoroestradiol ([18F]FES): minimization of precursor amount and resulting benefits

  • Olga Fedorova EMAIL logo , Viktoriya Orlovskaya , Michail Nadporojskii and Raisa Krasikova
From the journal Radiochimica Acta

Abstract

The 16α-[18F]Fluoroestradiol ([18F]FES) is an established PET radiotracer for estrogen positive (ER+) breast cancer. Although the radiosynthesis is well-described, the majority of the published methods suffer from modest or irreproducible yields and time-intensive purification procedures. In view of the considerable clinical applications, development of a more efficient and faster synthesis of [18F]FES still remains a task of a significant practical importance. [18F]FES was produced by a direct nucleophilic radiofluorination of 3-O-methoxymethyl-16,17-O-sulfuryl-16-epiestriol (MMSE), followed by acidic hydrolysis using HCl/CH3CN. [18F]Fluoride retained on a QMA carb cartridge (46 mg) was eluted by solution of 1.2 mg of tetrabutylammonium tosylate (TBAOTs) in EtOH. After fluorination reaction (0.3 mg MMSE, 1 ml of CH3CN/100 °C, 5 min) [18F]FES was isolated by single-cartridge SPE purification using OASIS WAX 3cc, elution accomplished with aqueous ethanol of different concentrations. On а GE TRACERlab FX N Pro automated module [18F]FES (formulated in normal saline with 5% EtOH) was obtained in 33 ± 3% yield (n = 5, non-decay corrected) within 32 min. Reduction of precursor amount, exclusion of azeotropic drying step and simplification of purification make the suggested method readily adaptable to various automated synthesizers and offers significant cost decrease.


Corresponding author: Olga Fedorova, N.P. Bechtereva Institute of the Human Brain, Russian Academy of Sciences, 9, Pavlova str., 197376, Saint-Petersburg, Russia, E-mail:

Funding source: N.P. Bechtereva Institute of Human Brain, Russian Academy of Sciences

  1. Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: This study was supported by state funding at the N.P. Bechtereva Institute of Human Brain, Russian Academy of Sciences.

  3. Conflict of interest statement: The authors declare no conflicts of interest.

References

1. van Kruchten, M., de Vries, E. G., Brown, M., de Vries, E. F. J., Glaudemans, A. W. J. M., Dierckx, R. A. J. O., Schroder, C. P., Hospers, G. A. P. PET imaging of oestrogen receptors in patients with breast cancer. Lancet Oncol. 2013, 14, e465; https://doi.org/10.1016/s1470-2045(13)70292-4.Search in Google Scholar

2. Liao, G. J., Clark, A. S., Schubert, E. K., Mankoff, D. A. 18F-Fluoroestradiol PET: current status and potential future clinical applications. J. Nucl. Med. 2016, 57, 1269; https://doi.org/10.2967/jnumed.116.175596.Search in Google Scholar PubMed

3. Mintun, M. A., Welch, M. J., Siegel, B. A. Breast cancer: PET imaging of estrogen receptors. Radiology 1988, 169, 45; https://doi.org/10.1148/radiology.169.1.3262228.Search in Google Scholar PubMed

4. Peterson, L. M., Mankoff, D. A., Lawton, T., Yagle, K., Schubert, E. K., Stekhova, S., Gown, A., Link, J. M., Tewson, T., Krohn, K. A. Quantitative imaging of estrogen receptor expression in breast cancer with PET and 18F-fluoroestradiol. J. Nucl. Med. 2008, 49, 367; https://doi.org/10.2967/jnumed.107.047506.Search in Google Scholar PubMed

5. Gemignani, M. L., Patil, S., Seshan, V. E., Sampson, M., Humm, J. L., Lewis, J. S., Brogi, E., Larson, S. M., Morrow, M., Pandit-Taskar, N. Feasibility and predictability of perioperative PET and estrogen receptor ligand in patients with invasive breast cancer. J. Nucl. Med. 2013, 54, 1697; https://doi.org/10.2967/jnumed.112.113373.Search in Google Scholar PubMed PubMed Central

6. Mortimer, J. E., Dehdashti, F., Siegel, B. A., Trinkaus, K., Katzenellenbogen, J. A., Welch, M. J. Metabolic flare: indicator of hormone responsiveness in advanced breast cancer. J. Clin. Oncol. 2001, 19, 2797; https://doi.org/10.1200/jco.2001.19.11.2797.Search in Google Scholar

7. Dehdashti, F., Flanagan, F. L., Mortimer, J. E., Katzenellenbogen, J. A., Welch, M. J., Siegel, B. A. Positron emission tomographic assessment of “metabolic flare” to predict response of metastatic breast cancer to antiestrogen therapy. Eur. J. Nucl. Med. 1999, 26, 51; https://doi.org/10.1007/s002590050359.Search in Google Scholar PubMed

8. Katzenellenbogen, J. A. The quest for improving the management of breast cancer by functional imaging: the discovery and development of 16α-[18F]Fluoroestradiol (FES), a PET radiotracer for the estrogen receptor, a historical review. Nucl. Med. Biol. Feb 2020, 22, Epub; https://doi.org/10.1016/j.nuclmedbio.2020.02.007.Search in Google Scholar

9. Jones, E. F., Ray, K. M., Li, W., Chien, A. J., Mukhtar, R. A., Esserman, L. J., Franc, B. L., Seo, Y., Pampaloni, M. H., Joe, B. N., Hylton, N. M. Initial experience of dedicated breast PET imaging of ER+ breast cancers using [F-18]fluoroestradiol. Breast Cancer 2019, 5, 12; https://doi.org/10.1038/s41523-019-0107-9.Search in Google Scholar PubMed PubMed Central

10. de Vries, E. G. E., Venema, C. M., Glaudemans, A. W. J. M., Jager, A., Garner, F., O’Neill, A., Patki, A. A phase 1 study of RAD1901, an oral selective estrogen receptor degrader, to determine changes in the 18F-FES uptake and tumor responses in ER-positive, HER2-negative, advanced breast cancer patients. Cancer Res 2017, 77, P2-08-08.10.1158/1538-7445.SABCS16-P2-08-08Search in Google Scholar

11. Wang, Y., Ayres, K. L., Goldman, D. A., Dickler, M. N., Bardia, A., Mayer, I. A., Winer, E., Fredrickson, J., Arteaga, C. L., Baselga, J., Manning, H. C., Mahmood, U., Ulaner, G. A. 18F-fluoroestradiol PET/CT measurement of estrogen receptor suppression during a phase I trial of the novel estrogen receptor-targeted therapeutic GDC-0810: using an imaging biomarker to guide drug dosage in subsequent trials. Clin. Cancer Res. 2017, 23, 3053; https://doi.org/10.1158/1078-0432.ccr-16-2197.Search in Google Scholar PubMed PubMed Central

12. Kiesewetter, D. O., Kilbourn, M. R., Landwatter, S. W., Heiman, D. F., Katzenellenbogen, J. A., Welch, M. J. Preparation of four fluorine-18 labeled estrogens and their selective uptakes in target tissues of immature rats. J. Nucl. Med. 1984, 25, 1212.Search in Google Scholar

13. Lim, J. L., Berridge, M. S., Tewson, T. J. Preparation of [18F]16α-fluoro-17β-estradiol by selective nucleophilic substitution. J. Label. Compd. Radiopharm. 1994, 35, 176.Search in Google Scholar

14. Knott, K. E., Gratz, D., Hubner, S., Juttler, S., Zankl, C., Muller, M. Simplified and automatic one-pot synthesis of 16α-[18F]fluoroestradiol without high-performance liquid chromatography purification. J. Label. Compd. Radiopharm. 2011, 54, 749; https://doi.org/10.1002/jlcr.1916.Search in Google Scholar

15. Gupta, M., Datta, A., Choudhury, P. S., Dsouza, M., Batra, U., Mishra, A. Can 18F-fluoroestradiol positron emission tomography become a new imaging standard in the estrogen receptor-positive breast cancer patient: a prospective comparative study with 18F-fluorodeoxyglucose positron emission tomography?. World J. Nucl. Med. 2017, 16, 133; https://doi.org/10.4103/1450-1147.203071.Search in Google Scholar PubMed PubMed Central

16. Huang, Y. Y., Tsai, C. L., Chang, Y. N., Yan, R. F. Automated production of GMP-compliant 18F-FES as an estrogen receptor ligand for breast cancer imaging. Ann. Nucl. Med. Mol. Imaging 2017, 30, 143.Search in Google Scholar

17. Liang, S., Lan, X., Zhang, Y., Xu, X., Li, B. Fully automatic synthesis of [18F]FES for reporter gene hERL expression imaging. Nucl. Med. Commun. 2012, 33, 29; https://doi.org/10.1097/mnm.0b013e32834d3b92.Search in Google Scholar

18. Dixit, M., Shi, J., Wei, L., Afari, G., Bhattacharyya, S. Synthesis of clinical grade [18F]fluoroestradiol as a surrogate PET biomarker for the evaluation of ER-targeting therapeutic drug. Int. J. Mol. Imaging 2013, 2013, 1; https://doi.org/10.1155/2013/278607.Search in Google Scholar PubMed PubMed Central

19. Shi, J., Afari, G., Bhattacharyya, S. Rapid synthesis of [18F]fluoroestradiol: remarkable advantage of microwaving over conventional heating. J. Label. Compd. Radiopharm. 2014, 57, 730; https://doi.org/10.1002/jlcr.3248.Search in Google Scholar PubMed PubMed Central

20. Fedorova, O., Nikolaeva, V., Krasikova, R. Automated SPE-based synthesis of 16α-[18F]fluoroestradiol without HPLC purification step. Appl. Radiat. Isot. 2018, 141, 57; https://doi.org/10.1016/j.apradiso.2018.08.007.Search in Google Scholar PubMed

21. Wang, M., Glick-Wilson, B. E., Zheng, Q. H. Fully automated radiosynthesis and quality control of estrogen receptor targeting radiopharmaceutical 16α-[18F]Fluoroestradiol ([18F]FES) for human breast cancer imaging. Appl. Radiat. Isot. 2020, Epub; https://doi.org/10.1016/j.apradiso.2020.109109.Search in Google Scholar PubMed

22. Oh, S. J., Chi, D. Y., Mosdzianowski, C., Kil, H. S., Ryu, J. S., Moon, D. H. The automatic production of 16α-[18F]fluoroestradiol using a conventional [18F]FDG module with a disposable cassette system. Appl. Radiat. Isot. 2007, 65, 676; https://doi.org/10.1016/j.apradiso.2006.06.016.Search in Google Scholar PubMed

23. Sundararajan, L., Linden, H. M., Link, J. M., Krohn, K. A., Mankoff, D. A. 18F-Fluoroestradiol. Semin. Nucl. Med. 2007, 37, 470; https://doi.org/10.1053/j.semnuclmed.2007.08.003.Search in Google Scholar PubMed

24. Mori, T., Kasamatsu, S., Mosdzianowski, C., Welch, M. J., Yonekura, Y., Fujibayashi, Y. Automatic synthesis of 16α-[18F]fluoro-17β-estradiol using a cassette-type [18F]fluorodeoxyglucose synthesizer. Nucl. Med. Biol. 2006, 33, 281; https://doi.org/10.1016/j.nucmedbio.2005.11.002.Search in Google Scholar

25. Antunes, I. F., van Waarde, A., Dierckx, R. A., de Vries, E. G., Hospers, G. A., de Vries, E. F. Synthesis and evaluation of the estrogen receptor β-selective radioligand 2-18F-fluoro-6-(6-hydroxynaphthalen-2-yl)pyridin-3-ol: comparison with 16α-18F-fluoro-17β-estradiol. J. Nucl. Med. 2017, 58, 554; https://doi.org/10.2967/jnumed.116.180158.Search in Google Scholar

26. Suehiro, M., Vallabhajosula, S., Goldsmith, S. J., Ballon, D. J. Investigation of the role of the base in the synthesis of [18F]FLT. Appl. Radiat. Isot. 2007, 65, 1350; https://doi.org/10.1016/j.apradiso.2007.07.013.Search in Google Scholar

27. Coenen, H. H., Ermert, J. 18F-labelling innovations and their potential for clinical application. Clin. Trans. Imaging 2018, 6, 169; https://doi.org/10.1007/s40336-018-0280-0.Search in Google Scholar

28. Chirakal, R., McCarry, B., Lonergan, M., Firnau, G., Garnett, S. Base-mediated decomposition of a mannose triflate during the synthesis of 2-deoxy-2-18F-fluoro-D-glucose. Appl. Radiat. Isot. 1995, 46, 149; https://doi.org/10.1016/0969-8043(94)00128-m.Search in Google Scholar

29. Bogni, A., Laera, L., Cucchi, C., Iwata, R., Seregni, E., Pascali, C. An improved automated one-pot synthesis of O-(2-[18F]fluoroethyl)-L-tyrosine ([18F]FET) based on a purification by cartridges. Nucl. Med. Biol. 2019, 72-73, 11; https://doi.org/10.1016/j.nucmedbio.2019.05.006.Search in Google Scholar

30. Lee, S. J., Oh, S. J., Chi, D. Y., Moon, D. H. High-yielding [18F]fluorination method by fine control of the base. Bull. Kor. Chem. Soc. 2012, 33, 2177; https://doi.org/10.5012/bkcs.2012.33.7.2177.Search in Google Scholar

31. Pascali, C., Bogni, A., Fugazza, L., Cuicchi, C., Crispu, O., Laera, L., Iwata, R., Maiocchi, G., Crippa, F., Bombardieri, E. Simple preparation and purification of ethanol-free solutions of 3’-deoxy-3’-[18Ffluorothymidine by means of disposable solid-phase extraction cartridges. Nucl. Med. Biol. 2012, 39, 540; https://doi.org/10.1016/j.nucmedbio.2011.10.005.Search in Google Scholar

32. Katsifis, A., Hamacher, K., Schnitter, J., Stoklin, G. Optimization studies concerning the direct nucleophilic fluorination of butyrophenone neuroleptics. Appl. Radiat. Isot. 1993, 44, 1015; https://doi.org/10.1016/0969-8043(93)90005-u.Search in Google Scholar

33. Seo, J. W., Lee, B. S., Lee, S. J., Oh, S. J. Fast and easy drying method for the preparation of activated [18F]Fluoride using polymer cartridge. Bull. Kor. Chem. Soc. 2011, 32, 71; https://doi.org/10.5012/bkcs.2011.32.1.71.Search in Google Scholar

34. Orlovskaya, V., Fedorova, O., Nadporojskii, M., Krasikova, R. A fully automated azeotropic drying free synthesis of O-(2-[18F]fluoroethyl)-L-tyrosine ([18F]FET) using tetrabutylammonium tosylate. Appl. Radiat. Isot. 2019, 152, 135; https://doi.org/10.1016/j.apradiso.2019.07.006.Search in Google Scholar PubMed

35. Orlovskaya, V., Antuganov, D., Fedorova, O., Timofeev, V., Krasikova, R. Tetrabutyl ammonium tosylate as inert phase-transfer catalyst: the key to high efficiency SN2 radiofluorinations. Appl. Radiat. Isot. 2020, 163, 109195; https://doi.org/10.1016/j.apradiso.2020.109195.Search in Google Scholar PubMed

36. Inkster, J. A. H., Akurathi, V., Sromek, A. W., Chen, Y., Neumeyer, J. L., Packard, A. B. A non-anhydrous, minimally basic protocol for the simplification of nucleophilic 18F-fluorination chemistry. Sci. Rep. 2020, 10, 6818; https://doi.org/10.1038/s41598-020-61845-y.Search in Google Scholar PubMed PubMed Central

37. Zhou, D., Lin, M., Al-Qahtani, M. H., Dence, C. S., Schwarz, S., Katzenellenbogen, J. A. Optimization of the preparation of fluorine-18-labeled steroid receptor ligands 16 alpha-[18F]fluoroestradiol (FES), [18F]fluoro furanyl norprogesterone (FFNP), and 16beta-[18F]fluoro-5alpha-dihydrotestosterone (FDHT) as radiopharmaceuticals. J. Label. Compd. Radiopharm. 2014, 57, 371; https://doi.org/10.1002/jlcr.3191.Search in Google Scholar PubMed PubMed Central

38. Krasikova, R. PET Radiochemistry automation: state of the art and future trends in18F-nucleophilic fluorination. Curr. Org. Chem. 2013, 17, 2097; https://doi.org/10.2174/13852728113179990102.Search in Google Scholar

39. Investigator’s Brochure for [18F]fluoroestradiol. Materials of NIH national cancer Institute, division of cancer treatment and diagnosis, IND Regulatory and Manufacturing Resources, https://imaging.cancer.gov/programs_resources/cancer-tracer-synthesis-resources/docs/fes_ib_pdf.pdf.Search in Google Scholar

Received: 2020-06-12
Accepted: 2020-08-06
Published Online: 2020-11-10
Published in Print: 2020-11-18

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 23.4.2024 from https://www.degruyter.com/document/doi/10.1515/ract-2020-0058/html
Scroll to top button