• Open Access

Mapping flows on bipartite networks

Christopher Blöcker and Martin Rosvall
Phys. Rev. E 102, 052305 – Published 11 November 2020

Abstract

Mapping network flows provides insight into the organization of networks, but even though many real networks are bipartite, no method for mapping flows takes advantage of the bipartite structure. What do we miss by discarding this information and how can we use it to understand the structure of bipartite networks better? The map equation models network flows with a random walk and exploits the information-theoretic duality between compression and finding regularities to detect communities in networks. However, it does not use the fact that random walks in bipartite networks alternate between node types, information worth 1 bit. To make some or all of this information available to the map equation, we developed a coding scheme that remembers node types at different rates. We explored the community landscape of bipartite real-world networks from no node-type information to full node-type information and found that using node types at a higher rate generally leads to deeper community hierarchies and a higher resolution. The corresponding compression of network flows exceeds the amount of extra information provided. Consequently, taking advantage of the bipartite structure increases the resolution and reveals more network regularities.

  • Figure
  • Figure
  • Figure
  • Figure
  • Received 3 July 2020
  • Accepted 10 October 2020

DOI:https://doi.org/10.1103/PhysRevE.102.052305

Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI. Funded by Bibsam.

Published by the American Physical Society

Physics Subject Headings (PhySH)

Networks

Authors & Affiliations

Christopher Blöcker* and Martin Rosvall

  • Integrated Science Laboratory, Department of Physics, Umeå University, SE-901 87 Umeå, Sweden

  • *christopher.blocker@umu.se
  • martin.rosvall@umu.se

Article Text

Click to Expand

References

Click to Expand
Issue

Vol. 102, Iss. 5 — November 2020

Reuse & Permissions
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review E

Reuse & Permissions

It is not necessary to obtain permission to reuse this article or its components as it is available under the terms of the Creative Commons Attribution 4.0 International license. This license permits unrestricted use, distribution, and reproduction in any medium, provided attribution to the author(s) and the published article's title, journal citation, and DOI are maintained. Please note that some figures may have been included with permission from other third parties. It is your responsibility to obtain the proper permission from the rights holder directly for these figures.

×

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×