Skip to main content
Log in

Hydrothermal Extraction of Valuable Components from Leaves and Petioles from Paulownia elongata x fortunei

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

The leaves and petioles of Paulownia elongata x fortunei are residual fractions from the tree plantations commercially destined to the production of wood and their valorization could contribute to the rational utilization of this resource. The saccharidic fraction is the most abundant in both parts of the plant and the sugar profile is very similar, but the ethanol extractives are more abundant in leaves. Non isothermal processing was selected since it provided better results than isothermal extraction with shorter times. For this reason, optimization of autohydrolysis under non isothermal operation (140–240 °C) was performed for both materials: leaves and petioles. The final autohydrolysis temperature highly influenced the saccharidic, proteic, phenolic and volatile composition of the extracts. Operating under selected conditions leaves provided extracts with more antioxidant compounds than petioles. The proposed technology provides a variety of commercially valuable components, which could contribute to the integral use of this energetic crop following a biorefinery approach.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Yadav, N.K., Vaidya, B.N., Henderson, K., Lee, J., Stewart, W.M., Dhekney, S.A., Joshee, N.: A review of Paulownia biotechnology: a short rotation, fast growing multipurpose bioenergy tree. Am. J. Plant Sci. 4, 2070–2082 (2013). https://doi.org/10.4236/ajps.2013.411259

    Article  Google Scholar 

  2. García-Morote, F.A., López-Serrano, F.R., Martínez-García, E., Andrés-Abellán, M., Dadi, T., Candel, D., Rubio, E., Lucas-Borja, M.E.: Stem biomass production of Paulownia elongata × P. fortunei under low irrigation in a semi-arid environment. Forests 5, 2505–2520 (2014). https://doi.org/10.3390/f5102505

    Article  Google Scholar 

  3. San José, M.C., Cernadas, M.J., Corredoira, E.: Histology of the regeneration of Paulownia tomentosa (Paulowniaceae) by organogénesis Histología de la regeneración por organogénesis en Paulownia tomentosa (Paulowniaceae). Rev. Biol. Trop. 62, 809–818 (2014). https://doi.org/https://doi.org/10.15517/rbt.v62i2.10845

  4. Domínguez, E., Romaní, A., Domingues, L., Garrote, G.: Evaluation of strategies for second generation bioethanol production from fast growing biomass Paulownia within a biorefinery scheme. Appl. Energy. 187, 777–789 (2017). https://doi.org/10.1016/j.apenergy.2016.11.114

    Article  Google Scholar 

  5. Milenković, I., Tomšovský, M., Karadžić, D., Veselinović, M.: Decline of Paulownia tomentosa caused by Trametes hirsuta in Serbia. For. Pathol. 48, (2018). https://doi.org/https://doi.org/10.1111/efp.12438

  6. Schneiderová, K., Šmejkal, K.: Phytochemical profile of Paulownia tomentosa (Thunb). Steud. Phytochem. Rev. 14, 799–833 (2015). https://doi.org/10.1007/s11101-014-9376-y

    Article  Google Scholar 

  7. Ryu, H.W., Park, Y.J., Lee, S.U., Lee, S., Yuk, H.J., Seo, K.-H., Kim, Y.-U., Hwang, B.Y., Oh, S.-R.: Potential anti-inflammatory effects of the fruits of Paulownia tomentosa. J. Nat. Prod. 80, 2659–2665 (2017). https://doi.org/10.1021/acs.jnatprod.7b00325

    Article  Google Scholar 

  8. He, T., Vaidya, B., Perry, Z., Parajuli, P., Joshee, N.: Paulownia as a medicinal tree: traditional uses and current advances. Eur J. Med. Plants. 14, 1–15 (2016). https://doi.org/10.9734/ejmp/2016/25170

    Article  Google Scholar 

  9. Yan, J., Joshee, N., Liu, S.: Utilization of hardwood in biorefinery: a kinetic interpretation of pilot-scale hot-water pretreatment of Paulownia elongata woodchips. J. Biobased Mater. Bioenergy. 10, 339–348 (2016). https://doi.org/10.1166/jbmb.2016.1609

    Article  Google Scholar 

  10. Díaz Reinoso, B., González Muñoz, M.J., Domínguez González, H.: Introduction. In: Domínguez, H. and González-Muñoz, M. (eds.) Water Extraction of Bioactive Compounds: From Plants to Drug Development. pp. 1–50. Elsevier (2017)

  11. Pinto, D., Vieira, E.F., Peixoto, A.F., Freire, C., Freitas, V., Costa, P., Delerue-Matos, C., Rodrigues, F.: Optimizing the extraction of phenolic antioxidants from chestnut shells by subcritical water extraction using response surface methodology. Food Chem. (2021). https://doi.org/https://doi.org/10.1016/j.foodchem.2020.127521

  12. Wiboonsirikul, J., Adachi, S.: Extraction of functional substances from agricultural products or by-products by subcritical water treatment. Food Sci. Technol. Res. 14, 319–328 (2008). https://doi.org/10.3136/fstr.14.319

    Article  Google Scholar 

  13. Santos, T.M., Alonso, M.V., Oliet, M., Domínguez, J.C., Rigual, V., Rodriguez, F.: Effect of autohydrolysis on Pinus radiata wood for hemicellulose extraction. Carbohydr. Polym. 194, 285–293 (2018). https://doi.org/10.1016/j.carbpol.2018.04.010

    Article  Google Scholar 

  14. Cruz, J.M., Conde, E., Domínguez, H., Parajó, J.C.: Thermal stability of antioxidants obtained from wood and industrial wastes. Food Chem. 100, 1059–1064 (2007). https://doi.org/10.1016/j.foodchem.2005.11.012

    Article  Google Scholar 

  15. González, J., Cruz, J.M., Domínguez, H., Parajó, J.C.: Production of antioxidants from Eucalyptus globulus wood by solvent extraction of hemicellulose hydrolysates. Food Chem. 84, 243–251 (2004). https://doi.org/10.1016/S0308-8146(03)00208-5

    Article  Google Scholar 

  16. Cruz, J.M., Domínguez, H., Parajó, J.C.: Anti-oxidant activity of isolates from acid hydrolysates of Eucalyptus globulus wood. Food Chem. 90, 503–511 (2005). https://doi.org/10.1016/j.foodchem.2004.05.018

    Article  Google Scholar 

  17. Cruz, J.M., Domínguez, H., Parajó, J.C.: Assessment of the production of antioxidants from winemaking waste solids. J. Agric. Food Chem. 52, 5612–5620 (2004)

    Article  Google Scholar 

  18. González-Muñoz, M.J., Conde, E., Domínguez, H., Torres, M.D.: Recovery of phytochemical compounds from natural and blanched green broccoli using non-isothermal autohydrolysis. Int. J. Food Sci. Technol. 54, 1276–1282 (2019). https://doi.org/10.1111/ijfs.14066

    Article  Google Scholar 

  19. Conde, E., Moure, A., Domínguez, H., Parajó, J.C.: Production of antioxidants by non-isothermal autohydrolysis of lignocellulosic wastes. LWT - Food Sci. Technol. 44, 436–442 (2011). https://doi.org/10.1016/j.lwt.2010.08.006

    Article  Google Scholar 

  20. González-López, N., Moure, A., Domínguez, H.: Hydrothermal fractionation of Sargassum muticum biomass. J. Appl. Phycol. 24, 1569–1578 (2012). https://doi.org/10.1007/s10811-012-9817-1

    Article  Google Scholar 

  21. Parada, M., Rodríguez-Blanco, A., de Ana, F., Magán, F., Domínguez, H.: Sequential extraction of Hericium erinaceus using green solvents. LWT Food Sci. Technol. 64, 397–404 (2015). https://doi.org/10.1016/j.lwt.2015.06.008

    Article  Google Scholar 

  22. Rodríguez-Seoane, P., González-Muñoz, M.J., Falqué, E., Domínguez, H.: Pressurized hot water extraction of β-glucans from Cantharellus tubaeformis. Electrophoresis. 39, 1892–1898 (2018). https://doi.org/10.1002/elps.201700399

    Article  Google Scholar 

  23. Herrero, M., Temirzoda, T.N., Segura-Carretero, A., Quirantes, R., Plaza, M., Ibañez, E.: New possibilities for the valorization of olive oil by-products. J. Chromatogr. A. 1218, 7511–7520 (2011). https://doi.org/10.1016/j.chroma.2011.04.053

    Article  Google Scholar 

  24. Cvetanović, A., Zeković, Z., Švarc-Gajić, J., Razić, S., Damjanović, A., Zengin, G., Delerue-Matos, C., Moreira, M.: A new source for developing multi-functional products: biological and chemical perspectives on subcritical water extracts of Sambucus ebulus L. J. Chem. Technol. Biotechnol. 93, 1097–1104 (2018). https://doi.org/10.1002/jctb.5468

    Article  Google Scholar 

  25. Pagano, I., Piccinelli, A.L., Celano, R., Campone, L., Gazzerro, P., Russo, M., Rastrelli, L.: Pressurized hot water extraction of bioactive compounds from artichoke by-products. Electrophoresis. 39, 1899–1907 (2018). https://doi.org/10.1002/elps.201800063

    Article  Google Scholar 

  26. Zeković, Z., Cvetanović, A., Švarc-Gajić, J., Gorjanović, S., Sužnjević, D., Mašković, P., Savić, S., Radojković, M., Đurović, S.: Chemical and biological screening of stinging nettle leaves extracts obtained by modern extraction techniques. Ind. Crops Prod. 108, 423–430 (2017). https://doi.org/10.1016/j.indcrop.2017.06.055

    Article  Google Scholar 

  27. Singleton, V.L., Rossi, J.A.: Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Vitic. 16, 144–158 (1965)

    Google Scholar 

  28. Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., Rice-Evans, C.: Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 26, 1231–1237 (1999). https://doi.org/10.1016/S0891-5849(98)00315-3

    Article  Google Scholar 

  29. Bradford, M.M.: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248–254 (1976). https://doi.org/10.1016/0003-2697(76)90527-3

    Article  Google Scholar 

  30. Del Valle, J.M., Rogalinski, T., Zetzl, C., Brunner, G.: Extraction of boldo (Peumus boldus M.) leaves with supercritical CO2 and hot pressurized water. Food Res. Int. 38, 203–213 (2005). https://doi.org/10.1016/j.foodres.2004.09.010

    Article  Google Scholar 

  31. Giombelli, C., Iwassa, I.J., da Silva, C., Bolanho Barros, B.C.: Valorization of peach palm by-product through subcritical water extraction of soluble sugars and phenolic compounds. J. Supercrit. Fluids. 165, 104985 (2020). https://doi.org/10.1016/j.supflu.2020.104985

    Article  Google Scholar 

  32. Ko, M.J., Nam, H.H., Chung, M.S.: Subcritical water extraction of bioactive compounds from Orostachys japonicus A Berger (Crassulaceae). Sci Rep 10, 10890 (2020). https://doi.org/10.1038/s41598-020-67508-2

    Article  Google Scholar 

  33. Kim, D.S., Lim, S.B.: Kinetic study of subcritical water extraction of flavonoids from Citrus unshiu peel. Sep Purif Technol (2020). https://doi.org/10.1016/j.seppur.2020.117259

    Article  Google Scholar 

  34. Tsubaki, S., Iida, H., Sakamoto, M., Azuma, J.-I.: Microwave heating of tea residue yields polysaccharides, polyphenols, and plant biopolyester. J. Agric. Food Chem. 56, 11293–11299 (2008). https://doi.org/10.1021/jf802253s

    Article  Google Scholar 

  35. Zohourian, T.H., Quitain, A.T., Sasaki, M., Goto, M.: Extraction of bioactive compounds from leaves of Lawsonia inermis by green pressurized fluids. Sep. Sci. Technol. 47, 1006–1013 (2012). https://doi.org/10.1080/01496395.2011.641056

    Article  Google Scholar 

  36. Luo, F., Yang, D., Chen, Z., Megharaj, M., Naidu, R.: Characterization of bimetallic Fe/Pd nanoparticles by grape leaf aqueous extract and identification of active biomolecules involved in the synthesis. Sci. Total Environ. 562, 526–532 (2016). https://doi.org/10.1016/j.scitotenv.2016.04.060

    Article  Google Scholar 

  37. Sung, W.-C.: Volatile constituents detected in smoke condensates from the combination of the smoking ingredients sucrose, black tea leaves, and bread flour. J. Food Drug Anal. 21, 292–300 (2013). https://doi.org/10.1016/j.jfda.2013.07.005

    Article  Google Scholar 

  38. Zhong, J., Wang, J., Gong, M., Lin, T., Liu, Z., Zhang, X., Chen, Y.: Kinetic and degradation mechanism study on Sr2CeO4-promoted photo-oxidation of gaseous benzene. Sep. Purif. Technol. 57, 57–62 (2007). https://doi.org/10.1016/j.seppur.2007.01.021

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the financing granted by the Ministry of Economy, Industry and Competitiveness of Spain through the project CTM2015-68503-R. PRS thanks to the Ministry of Economy, Industry and Competitiveness of Spain, the PIF grant BES-2016-076840, Sheila Gómez for her technical assistance and Ángel Álvarez for his help in collecting samples. C. del Pozo expresses her gratitude to the Universitat Autònoma de Barcelona for funding her PhD contract through PIF Grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paula Rodríguez-Seoane.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 140 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rodríguez-Seoane, P., del Pozo, C., Puy, N. et al. Hydrothermal Extraction of Valuable Components from Leaves and Petioles from Paulownia elongata x fortunei. Waste Biomass Valor 12, 4525–4535 (2021). https://doi.org/10.1007/s12649-020-01298-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-020-01298-6

Keywords

Navigation