Skip to main content

Advertisement

Log in

Sugarcane Stillage Treatment Using Direct Contact Membrane Distillation

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Direct contact membrane distillation (DCMD) was evaluated as an alternative for the treatment of sugarcane stillage obtained in the bioethanol production process. First, a synthetic stillage solution was prepared in order to study the influence of the main operational parameters of DCMD in the permeate flux, as well as to analyze the separation of volatile components (such as ethanol and acetic acid) and the concentration of non-volatile components presented in the feed stream (sucrose and other salts). Secondly, an industrial sample of sugarcane stillage was treated using DCMD. The highest flux achieved was 13.4 kg/m2·h for a transmembrane temperature difference of 55 °C, reaching a recovery degree of 70% with a specific thermal energy consumption of 671 kWh/m3. Then, sugarcane stillage was concentrated until 60°Brix. A preliminary economic study was also presented, an estimated cost of 1.25 $ per m3 of recovered permeate was obtained without any heat integration or DCMD operational optimization. DCMD showed to be suitable for stillage disposal allowing to recuperate the permeate stream as process water (containing mainly water and a low concentration of volatile components) and the concentrated stillage as biofuel to be used in the steam boiler (for producing more energy making the process thermally sustainable) or for ferti-irrigation (for reducing the transportation cost due to the volume reduction).

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. MAPA: Sugarcane industry, sugar and ethanol production in Brazil. MAPA, Azor (2019)

    Google Scholar 

  2. RFA (Renewable Fuels Association). Annual Ethanol Production—Renewable Fuels Association 2019. https://ethanolrfa.org/statistics/annual-ethanol-production/. Accessed 2 July 2019

  3. UNICA (União da Indústria de Cana-de-açúcar). Produção: Histórico de produção e moagem: por safra 2018/19 2019. https://unicadata.com.br/historico-de-producao-e-moagem.php?idMn=31&tipoHistorico=2&acao=visualizar&idTabela=2333&produto=etanol_total&safraIni=2016%2F2017&safraFim=2018%2F2019&estado=RS%2CSC%2CPR%2CSP%2CRJ%2CMG%2CES%2CMS%2CMT%2CGO%2CDF%2CBA%2CSE%2CAL%2CPE. Accessed 2 July 2019

  4. Goldemberg, J., Coelho, S.T., Guardabassi, P.: The sustainability of ethanol production from sugarcane. Energy Policy 36, 2086–2097 (2008). https://doi.org/10.1016/j.enpol.2008.02.028

    Article  Google Scholar 

  5. de Oliveira, S.: Exergy Analysis and Parametric Improvement of the Combined Production of Sugar, Ethanol, and Electricity, pp. 185–214. Springer, London (2013a) https://doi.org/10.1007/978-1-4471-4165-5_6

    Book  Google Scholar 

  6. de Oliveira, S.: Exergy and Renewability Analysis of Liquid Biofuels Production Routes, pp. 215–236. Springer, London (2013b) https://doi.org/10.1007/978-1-4471-4165-5_7

    Book  Google Scholar 

  7. Lassmann, T., Kravanja, P., Friedl, A.: Simulation of the downstream processing in the ethanol production from lignocellulosic biomass with ASPEN Plus® and IPSEpro. Energy Sustain. Soc. 4, 7 (2014). https://doi.org/10.1186/s13705-014-0027-3

    Article  Google Scholar 

  8. Moraes, B.S., Zaiat, M., Bonomi, A.: Anaerobic digestion of vinasse from sugarcane ethanol production in Brazil: challenges and perspectives. Renew. Sustain. Energy Rev. 44, 888–903 (2015). https://doi.org/10.1016/j.rser.2015.01.023

    Article  Google Scholar 

  9. Nogueira, C.E., de Souza, S.N., Mircuanski, V.C., Azevedo, R.L.: Exploring possibilities of energy insertion from vinasse biogas in the energy matrix of Paraná State, Brazil. Renew. Sustain. Energy Rev. 48, 300–305 (2015). https://doi.org/10.1016/j.rser.2015.04.023

    Article  Google Scholar 

  10. CONAB: Acompanhamento da safra Brasileira. Cana de açúcar Safra 2018/19. Cia Nac Abast 5, 1–75 (2019)

    Google Scholar 

  11. UNICA. Vinhaça: biofertilizante e energia sustentável—UNICA 2019. https://unica.com.br/nota/vinhaca-biofertilizante-e-energia-sustentavel/. Accessed 17 Mar 2020

  12. Satyawali, Y., Balakrishnan, M.: Wastewater treatment in molasses-based alcohol distilleries for COD and color removal: a review. J. Environ. Manag. 86, 481–497 (2008). https://doi.org/10.1016/j.jenvman.2006.12.024

    Article  Google Scholar 

  13. Parnaudeau, V., Condom, N., Oliver, R., Cazevieille, P., Recous, S.: Vinasse organic matter quality and mineralization potential, as influenced by raw material, fermentation and concentration processes. Bioresour. Technol. 99, 1553–1562 (2008). https://doi.org/10.1016/j.biortech.2007.04.012

    Article  Google Scholar 

  14. Moraes, B.S., Junqueira, T.L., Pavanello, L.G., Cavalett, O., Mantelatto, P.E., Bonomi, A., et al.: Anaerobic digestion of vinasse from sugarcane biorefineries in Brazil from energy, environmental, and economic perspectives: profit or expense ? Appl. Energy 113, 825–835 (2014). https://doi.org/10.1016/j.apenergy.2013.07.018

    Article  Google Scholar 

  15. Christofoletti, C.A., Escher, J.P., Correia, J.E., Marinho, J.F.U., Fontanetti, C.S.: Sugarcane vinasse: environmental implications of its use. Waste Manag. 33, 2752–2761 (2013). https://doi.org/10.1016/j.wasman.2013.09.005

    Article  Google Scholar 

  16. Mohana, S., Acharya, B.K., Madamwar, D.: Distillery spent wash: treatment technologies and potential applications. J. Hazard. Mater. 163, 12–25 (2009). https://doi.org/10.1016/j.jhazmat.2008.06.079

    Article  Google Scholar 

  17. Elia Neto, A.: Estado da Arte da Vinhaça. Unica (2016). https://doi.org/10.1590/S0101-73302005000400018

    Article  Google Scholar 

  18. de Godoi, L.A.G., Camiloti, P.R., Bernardes, A.N., Sanchez, B.L.S., Torres, A.P.R., da Conceição, G.A., et al.: Seasonal variation of the organic and inorganic composition of sugarcane vinasse: main implications for its environmental uses. Environ. Sci. Pollut. Res. (2019). https://doi.org/10.1007/s11356-019-06019-8

    Article  Google Scholar 

  19. Zi, L., Liu, C., Xin, C., Bai, F.: Stillage backset and its impact on ethanol fermentation by the flocculating yeast. Process. Biochem. 48, 753–758 (2013). https://doi.org/10.1016/j.procbio.2013.03.014

    Article  Google Scholar 

  20. Cardona, C.A., Sánchez, Ó.J.: Fuel ethanol production: process design trends and integration opportunities. Bioresour. Technol. 98, 2415–2457 (2007). https://doi.org/10.1016/j.biortech.2007.01.002

    Article  Google Scholar 

  21. Naspolini, B.F., De Oliveira Machado, A.C., Cravo, W.B., Freire, D.M.G., Cammarota, M.C.: Bioconversion of sugarcane vinasse into high-Added value products and energy. Biomed. Res. Int. (2017). https://doi.org/10.1155/2017/8986165

    Article  Google Scholar 

  22. Hoarau, J., Caro, Y., Grondin, I., Petit, T.: Sugarcane vinasse processing: toward a status shift from waste to valuable resource. A review. J. Water Process. Eng. 24, 11–25 (2018). https://doi.org/10.1016/j.jwpe.2018.05.003

    Article  Google Scholar 

  23. Beigbeder, J.B., Boboescu, I.Z., Lavoie, J.M.: Thin stillage treatment and co-production of bio-commodities through finely tuned Chlorellavulgaris cultivation. J. Clean. Prod. 216, 257–267 (2019). https://doi.org/10.1016/j.jclepro.2019.01.111

    Article  Google Scholar 

  24. Peiter, F.S., Hankins, N.P., Pires, E.C.: Evaluation of concentration technologies in the design of biorefineries for the recovery of resources from vinasse. Water Res. 157, 483–497 (2019). https://doi.org/10.1016/j.watres.2019.04.003

    Article  Google Scholar 

  25. Fukushima, N.A., Palacios-Bereche, M.C., Palacios-Bereche, R., Nebra, S.A.: Energy analysis of the ethanol industry considering vinasse concentration and incineration. Renew. Energy 142, 96–109 (2019). https://doi.org/10.1016/j.renene.2019.04.085

    Article  Google Scholar 

  26. Rodrigues Reis, C.E., Hu, B.: Vinasse from sugarcane ethanol production: better treatment or better utilization? Front. Energy Res. 5, 1–7 (2017). https://doi.org/10.3389/fenrg.2017.00007

    Article  Google Scholar 

  27. Nataraj, S.K., Hosamani, K.M., Aminabhavi, T.M.: Distillery wastewater treatment by the membrane-based nanofiltration and reverse osmosis processes. Water Res. 40, 2349–2356 (2006). https://doi.org/10.1016/j.watres.2006.04.022

    Article  Google Scholar 

  28. Wu, Y.V.: Recovery of stillage soluble solids from hard and soft wheat by reverse osmosis and ultrafiltration. Cereal Chem. 64, 260–264 (1987)

    Google Scholar 

  29. Ryan, D., Gadd, A., Kavanagh, J., Barton, G.W.: Integrated biorefinery wastewater design. Chem. Eng. Res. Des. 87, 1261–1268 (2009). https://doi.org/10.1016/j.cherd.2009.04.016

    Article  Google Scholar 

  30. Vasić, V.M., Prodanović, J.M., Kukić, D.V., Šćiban, M.B., Antov, M.G., Ivetić, D.Ž: Application of membrane and natural coagulants for stillage purification. Desalin. Water Treat. 51, 437–441 (2013). https://doi.org/10.1080/19443994.2012.714525

    Article  Google Scholar 

  31. Sousa, S.P., Lovato, G., Albanez, R., Ratusznei, S.M., Rodrigues, J.A.D.: Improvement of sugarcane stillage (vinasse) anaerobic digestion with cheese whey as its co-substrate: achieving high methane productivity and yield. Appl. Biochem. Biotechnol. (2019). https://doi.org/10.1007/s12010-019-03056-4

    Article  Google Scholar 

  32. Lovato, G., Batista, L.P.P., Preite, M.B., Yamashiro, J.N., Becker, A.L.S., Vidal, M.F.G., et al.: Viability of using glycerin as a co-substrate in anaerobic digestion of sugarcane stillage (vinasse): effect of diversified operational strategies. Appl. Biochem. Biotechnol. 188, 720–740 (2019). https://doi.org/10.1007/s12010-019-02950-1

    Article  Google Scholar 

  33. Parsaee, M., Kiani Deh Kiani, M., Karimi, K.: A review of biogas production from sugarcane vinasse. Biomass Bioenergy 122, 117–125 (2019). https://doi.org/10.1016/j.biombioe.2019.01.034

    Article  Google Scholar 

  34. Gebreeyessus, G.D., Mekonen, A., Alemayehu, E.: A review on progresses and performances in distillery stillage management. J. Clean. Prod. 232, 295–307 (2019). https://doi.org/10.1016/j.jclepro.2019.05.383

    Article  Google Scholar 

  35. Alkhudhiri, A., Darwish, N., Hilal, N.: Membrane distillation: a comprehensive review. Desalination 287, 2–18 (2012). https://doi.org/10.1016/j.desal.2011.08.027

    Article  Google Scholar 

  36. Kiss, A.A., Kattan Readi, O.M.: An industrial perspective on membrane distillation processes. J. Chem. Technol. Biotechnol. 93, 2047–2055 (2018). https://doi.org/10.1002/jctb.5674

    Article  Google Scholar 

  37. Ashoor, B.B., Mansour, S., Giwa, A., Dufour, V., Hasan, S.W.: Principles and applications of direct contact membrane distillation (DCMD): a comprehensive review. Desalination 398, 222–246 (2016). https://doi.org/10.1016/j.desal.2016.07.043

    Article  Google Scholar 

  38. Susanto, H.: Towards practical implementations of membrane distillation. Chem. Eng. Process. Process. Intensif. 50, 139–150 (2011). https://doi.org/10.1016/j.cep.2010.12.008

    Article  Google Scholar 

  39. Ding, Z., Ma, R., Fane, A.G.: A new model for mass transfer in direct contact membrane distillation. Desalination 151, 217–227 (2002). https://doi.org/10.1016/S0011-9164(02)01014-7

    Article  Google Scholar 

  40. Lawson, K.W., Lloyd, D.R.: Membrane distillation. J. Memb. Sci. 124, 1–25 (1997). https://doi.org/10.1016/S0376-7388(96)00236-0

    Article  Google Scholar 

  41. Macedonio, F., Drioli, E.: Membrane Distillation Development. Elsevier, Amsterdam (2019) https://doi.org/10.1016/b978-0-12-816170-8.00005-3

    Book  Google Scholar 

  42. Elzahaby, A.M., Kabeel, A.E., Bassuoni, M.M., Elbar, A.R.A.: Direct contact membrane water distillation assisted with solar energy. Energy Convers. Manag. 110, 397–406 (2016). https://doi.org/10.1016/j.enconman.2015.12.046

    Article  Google Scholar 

  43. Schwarzer, K., Vieira da Silva, E., Hoffschmidt, B., Schwarzer, T.: A new solar desalination system with heat recovery for decentralised drinking water production. Desalination 248, 204–211 (2009). https://doi.org/10.1016/j.desal.2008.05.056

    Article  Google Scholar 

  44. Zaragoza, G., Ruiz-Aguirre, A., Guillén-Burrieza, E.: Efficiency in the use of solar thermal energy of small membrane desalination systems for decentralized water production. Appl. Energy 130, 491–499 (2014). https://doi.org/10.1016/j.apenergy.2014.02.024

    Article  Google Scholar 

  45. Al-Obaidani, S., Curcio, E., Macedonio, F., Di Profio, G., Al-Hinai, H., Drioli, E.: Potential of membrane distillation in seawater desalination: thermal efficiency, sensitivity study and cost estimation. J. Memb. Sci. 323, 85–98 (2008). https://doi.org/10.1016/j.memsci.2008.06.006

    Article  Google Scholar 

  46. Guiot, S.R., van den Berg, L.: Performance of an upflow anaerobic reactor combining a sludge blanket and a filter treating sugar waste. Biotechnol. Bioeng. 27, 800–806 (1985). https://doi.org/10.1002/bit.260270608

    Article  Google Scholar 

  47. Kuusisto, L.M.: Development of a Mathematical Model, VUMP (Vinasse Utilization for Methane Production). University of Texas at Arlington, Arlington (2013)

    Google Scholar 

  48. Cho, J.K., Kim, B.S., Park, S.C., Choi, Y.S., Chang, H.N.: Effect of stepwise seeding on the performance of four anaerobic biofilters treating a synthetic stillage waste. Biomass Bioenergy 10, 25–35 (1996). https://doi.org/10.1016/0961-9534(95)00033-X

    Article  Google Scholar 

  49. APHA: Standard Methods for the Examination of Water and Wastewater—Inorganic Metals, Organics, Oxygen, Carbon, Humics, DBPs. APHA, Washington, D.C. (1999)

    Google Scholar 

  50. Guillén-Burrieza, E., Blanco, J., Zaragoza, G., Alarcón, D.C., Palenzuela, P., Ibarra, M., et al.: Experimental analysis of an air gap membrane distillation solar desalination pilot system. J. Memb. Sci. 379, 386–396 (2011). https://doi.org/10.1016/j.memsci.2011.06.009

    Article  Google Scholar 

  51. Jantaporn, W., Ali, A., Aimar, P.: Specific energy requirement of direct contact membrane distillation. Chem. Eng. Res. Des. (2017). https://doi.org/10.1016/j.cherd.2017.09.031

    Article  Google Scholar 

  52. Ali, A., Criscuoli, A., Macedonio, F., Drioli, E.: A comparative analysis of flat sheet and capillary membranes for membrane distillation applications. Desalination 456, 1–12 (2019). https://doi.org/10.1016/j.desal.2019.01.006

    Article  Google Scholar 

  53. Larsson, E., Tengberg, T.: Evaporation of Vinasse—Pilot Plant Investigation and Preliminary Process Design. Chalmers University of Technology, Gothenburg (2014)

    Google Scholar 

  54. Ali, M.I., Summers, E.K., Arafat, H.A., Lienhard, V.J.H.: Effects of membrane properties on water production cost in small scale membrane distillation systems. Desalination 306, 60–71 (2012). https://doi.org/10.1016/j.desal.2012.07.043

    Article  Google Scholar 

  55. Kesieme, U.K., Milne, N., Aral, H., Cheng, C.Y., Duke, M.: Economic analysis of desalination technologies in the context of carbon pricing, and opportunities for membrane distillation. Desalination 323, 66–74 (2013). https://doi.org/10.1016/j.desal.2013.03.033

    Article  Google Scholar 

  56. El-Bourawi, M.S., Ding, Z., Ma, R., Khayet, M.: A framework for better understanding membrane distillation separation process. J. Memb. Sci. 285, 4–29 (2006). https://doi.org/10.1016/j.memsci.2006.08.002

    Article  Google Scholar 

  57. Gryta, M.: Effectiveness of water desalination by membrane distillation process. Membranes (Basel) 2, 415–429 (2012). https://doi.org/10.3390/membranes2030415

    Article  Google Scholar 

  58. Khalifa, A., Lawal, D., Antar, M., Khayet, M.: Experimental and theoretical investigation on water desalination using air gap membrane distillation. Desalination 376, 94–108 (2015). https://doi.org/10.1016/j.desal.2015.08.016

    Article  Google Scholar 

  59. Kayvani Fard, A., Manawi, Y.M., Rhadfi, T., Mahmoud, K.A., Khraisheh, M., Benyahia, F.: Synoptic analysis of direct contact membrane distillation performance in Qatar: a case study. Desalination 360, 97–107 (2015). https://doi.org/10.1016/j.desal.2015.01.016

    Article  Google Scholar 

  60. Khayet, M., Matsuura, T.: Membrane Distillation Principles and Applications. Elsevier, Amsterdam (2011)

    Google Scholar 

  61. Abdel-Rahman, A.: Modeling temperature and salt concentration distribution in direct contact membrane distillation. J Eng Sci Assiut Univ 36, 1167–1188 (2008)

    Google Scholar 

  62. Mengual, J.I., Khayet, M., Godino, M.P.: Heat and mass transfer in vacuum membrane distillation. Int J Heat Mass Transf 47, 865–875 (2004). https://doi.org/10.1016/j.ijheatmasstransfer.2002.09.001

    Article  Google Scholar 

  63. Martı́nez-Dı́ez, L., Vázquez-González, M.: Temperature and concentration polarization in membrane distillation of aqueous salt solutions. J. Memb. Sci. 156, 265–273 (1999). https://doi.org/10.1016/S0376-7388(98)00349-4

    Article  Google Scholar 

  64. Perfilov, V., Ali, A., Fila, V.: A general predictive model for direct contact membrane distillation. Desalination 445, 181–196 (2018). https://doi.org/10.1016/j.desal.2018.08.002

    Article  Google Scholar 

  65. Boubakri, A., Bouguecha, S.A.T., Dhaouadi, I., Hafiane, A.: Effect of operating parameters on boron removal from seawater using membrane distillation process. Desalination 373, 86–93 (2015). https://doi.org/10.1016/j.desal.2015.06.025

    Article  Google Scholar 

  66. Pantoja, C.E., Nariyoshi, Y.N., Seckler, M.M.: Membrane distillation crystallization applied to brine desalination: a hierarchical design procedure. Ind. Eng. Chem. Res. 54, 2776–2793 (2015). https://doi.org/10.1021/ie504695p

    Article  Google Scholar 

  67. Xie, Z., Duong, T., Hoang, M., Nguyen, C., Bolto, B.: Ammonia removal by sweep gas membrane distillation. Water Res. 43, 1693–1699 (2009). https://doi.org/10.1016/j.watres.2008.12.052

    Article  Google Scholar 

  68. El-Bourawi, M.S., Khayet, M., Ma, R., Ding, Z., Li, Z., Zhang, X.: Application of vacuum membrane distillation for ammonia removal. J. Memb. Sci. 301, 200–209 (2007). https://doi.org/10.1016/j.memsci.2007.06.021

    Article  Google Scholar 

  69. Fuess, L.T., Garcia, M.L., Zaiat, M.: Seasonal characterization of sugarcane vinasse: assessing environmental impacts from fertirrigation and the bioenergy recovery potential through biodigestion. Sci. Total Environ. 634, 29–40 (2018). https://doi.org/10.1016/j.scitotenv.2018.03.326

    Article  Google Scholar 

  70. Soomro, M.I., Kim, W.S.: Performance and economic investigations of solar power tower plant integrated with direct contact membrane distillation system. Energy Convers. Manag. 174, 626–638 (2018). https://doi.org/10.1016/j.enconman.2018.08.056

    Article  Google Scholar 

  71. Gryta, M., Markowska-Szczupak, A., Bastrzyk, J., Tomczak, W.: The study of membrane distillation used for separation of fermenting glycerol solutions. J. Memb. Sci. 431, 1–8 (2013). https://doi.org/10.1016/j.memsci.2012.12.032

    Article  Google Scholar 

  72. Berenjian, A., Chan, N., Malmiri, H.J.: Volatile organic compounds removal methods: a review. Am. J. Biochem. Biotechnol. 8, 220–229 (2012). https://doi.org/10.3844/ajbbsp.2012.220.229

    Article  Google Scholar 

  73. Sarti, G.C., Gostoli, C., Bandini, S.: Extraction of organic components from aqueous streams by vacuum membrane distillation. J. Memb. Sci. 80, 21–33 (1993). https://doi.org/10.1016/0376-7388(93)85129-K

    Article  Google Scholar 

  74. Yang, X., Wang, K., Wang, H., Zhang, J., Mao, Z.: Novel process combining anaerobic-aerobic digestion and ion exchange resin for full recycling of cassava stillage in ethanol fermentation. Waste Manag. 62, 241–246 (2017). https://doi.org/10.1016/j.wasman.2017.01.040

    Article  Google Scholar 

  75. Zhang, Q., Lu, X., Tang, L., Mao, Z., Zhang, J., Zhang, H., et al.: A novel full recycling process through two-stage anaerobic treatment of distillery wastewater for bioethanol production from cassava. J. Hazard. Mater. 179, 635–641 (2010). https://doi.org/10.1016/j.jhazmat.2010.03.050

    Article  Google Scholar 

  76. Navarro, A.R., Sepúlveda, M.C., Rubio, M.C.: Bio-concentration of vinasse from the alcoholic fermentation of sugar cane molasses. Waste Manag. 20, 581–585 (2000)

    Article  Google Scholar 

  77. Alkasrawi, M., Abu, A., Al-muhtaseb, A.H.: Simultaneous saccharification and fermentation process for ethanol production from steam-pretreated softwood: recirculation of condensate streams. Chem. Eng. J. 225, 574–579 (2013). https://doi.org/10.1016/j.cej.2013.04.014

    Article  Google Scholar 

  78. Wilkie, A.C., Riedesel, K.J., Owens, J.M.: Stillage characterization and anaerobic treatment of ethanol stillage from conventional and cellulosic feedstocks p. Biomass Bioenergy 19, 63–102 (2000)

    Article  Google Scholar 

  79. Ma, H., Yang, J., Jia, Y., Wang, Q., Tashiro, Y., Sonomoto, K.: Bioresource Technology Stillage reflux in food waste ethanol fermentation and its by-product accumulation. Bioresour. Technol. 209, 254–258 (2016). https://doi.org/10.1016/j.biortech.2016.02.127

    Article  Google Scholar 

  80. Ali, M.T., Fath, H.E.S., Armstrong, P.R.: A comprehensive techno-economical review of indirect solar desalination. Renew. Sustain. Energy Rev. 15, 4187–4199 (2011). https://doi.org/10.1016/j.rser.2011.05.012

    Article  Google Scholar 

  81. Cortes-Rodríguez, E.F., Fukushima, N.A., Palacios-Bereche, R., Ensinas, A.V., Nebra, S.A.: Vinasse concentration and juice evaporation system integrated to the conventional ethanol production process from sugarcane—heat integration and impacts in cogeneration system. Renew. Energy 115, 474–488 (2018). https://doi.org/10.1016/j.renene.2017.08.036

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to gratefully acknowledge to Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq-Brazil) for the scholarship of Omayra Ferreiro. Authors thank for the help of Paulo Yoshida, Francisco Oliveira, José Ieda Neto, Paula Figuereido and USJ Açúcar e Álcool S.A. Unidade São João—Araras—SP for the industrial sugarcane stillage samples. Besides, we thank to Fábio Diniz, Rui Castro and Prof Denise Freire from LABIM/IQ/UFRJ for their help with the HPLC analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Omayra B. Ferreiro.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ferreiro, O.B., Kronemberger, F.A. & Borges, C.P. Sugarcane Stillage Treatment Using Direct Contact Membrane Distillation. Waste Biomass Valor 12, 3987–3999 (2021). https://doi.org/10.1007/s12649-020-01303-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-020-01303-y

Keywords

Navigation