Skip to main content

Advertisement

Log in

Hydrothermal and Steam Explosion Pretreatment of Bambusa stenostachya Bamboo

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Many pretreatment techniques were used to change the physical and chemical structure of the lignocellulosic biomass and improve hydrolysis rates for conversion to fuel. A hydrothermal (HT) combined chemical treatment (acid or alkaline) and steam explosion (SE) at various pretreatment conditions were applied on bamboo biomass to study the hydrolysis of hemicelluloses and celluloses to their corresponding reducing sugars and evaluated these hydrolysis yield process. The results showed that the yield of pretreatment using sulfuric acid is more effective than using sodium hydroxide at the same hydrothermal condition. By treatment raw bamboo in 1.2% sulfuric acid, at 121 °C for 60 min and ratios of 1:15 (g/mL), the hydrolysis yield was 20%, exceeding than 10% that in 2.5% NaOH. Consecutive immersed in H2SO4 for 24 h before the steam explosion at 230 °C in 3 min, hydrolysis efficiency significantly increased to 72% compared to other methods. Whereas treated in NaOH then steam exploding, the cellulose and hemicellulose were not strongly affected to increase soluble sugars. Alkaline pretreatment in HT or SE conditions had extracted lignin the most of over 39%. The inhibitory concentration of furfural in the hydrolysate of immersed sulfuric acid and steam explosion showed the highest value of 0.402 g/L.

Graphic Abstract

In this study, bamboo biomass was carried out two pretreatment processes including hydrothermal and steam explosion with variations of acid and alkaline conditions. The carbohydrate content and dissolved sugar content in bamboo biomass were determined via HPLC-RID analysis technique to investigate the effect of conditions and processes on hydrolysis. The results prove that treated biomass by sulfuric acid then steam exploding is remarkably effective process that can be applied to large-scale for bamboo biomass.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Bourne, P.: Bamboo and sustainable development in Viet Nam. In: Bamboo Research Papers, vol. 31. p. 2017. (2017)

  2. Ohrnberger, D.: The Bamboos of the World: Annotated Nomenclature and Literature of the Species and the Higher and Lower Taxa. Elsevier, Amsterdam (1999)

    Google Scholar 

  3. Clark, L., Londoño, X., Ruiz-Sanchez, E.: Bamboo taxonomy and habitat. In: Bamboo. pp. 1–30. Springer, (2015)

  4. Maoyi, F., Banik, R.: Bamboo production systems and their management. In: 5 International Bamboo Workshop and the 4 International Bamboo Congress: propagation and Management, pp. 18–33. Bali, INBAR (1995)

  5. Truong, A.H., Le, T.M.A.: Overview of bamboo biomass for energy production. (2014)

  6. Nghia, N.H.: Bamboos of Vietnam. Agricultural Publishing House, Hanoi (2006)

    Google Scholar 

  7. Benton, A.: Priority species of bamboo. In: Liese W., M., K. (eds.) Bamboo, vol. 10. pp. 31–41. Springer, New York (2015)

  8. Karoshi, V.R., Nadagoudar, B.: Forest plantations for climate change mitigation–reviewing estimates of net primary productivity in forest plantations. Indian J. Agric. Econ. (2012). https://doi.org/10.22004/ag.econ.204803

    Article  Google Scholar 

  9. Bystriakova, N., Kapos, V., Lysenko, I., Stapleton, C.: Distribution and conservation status of forest bamboo biodiversity in the Asia-Pacific Region. Biodivers. Conserv. 12(9), 1833–1841 (2003). doi:https://doi.org/10.1023/A:1024139813651

    Article  Google Scholar 

  10. Fei, B., Gao, Z., Wang, J., Liu, Z.: Biological, anatomical, and chemical characteristics of bamboo. In: Secondary Xylem Biology. pp. 283–306. Elsevier, Amsterdam (2016)

  11. Lobovikov, M., Ball, L., Paudel, S., Guardia, M., Piazza, M., Wu, J., Ren, H., Russo, L.: World bamboo resources: a thematic study prepared in the framework of the global forest resources assessment 2005. vol. 18. Food & Agriculture Org., (2007)

  12. Tran, V.H.: Growth and quality of indigenous bamboo species in the mountainous regions of Northern Vietnam. Doctoral Thesis, Niedersächsische Staats-und Universitätsbibliothek Göttingen: (2010)

  13. Duyen, N.T.M.: Bamboo resources in Vietnam. In: Bamboo–Conservation, Diversity, Ecogeography, Germplasm, Resource Utilisation and Taxonomy. Proceedings of training course cum workshop, pp. 10–17 (1998)

  14. Cochard, R., Ngo, D.T., Waeber, P.O., Kull, C.A.: Extent and causes of forest cover changes in Vietnam’s provinces 1993–2013: a review and analysis of official data. Environ. Rev. 25(2), 199–217 (2017). doi:https://doi.org/10.1139/er-2016-0050

    Article  Google Scholar 

  15. Selvan, T.: Bamboo Resources, Their Status, Conservation and Strategies for Improvement. In: Chakravarty, S.A.S., Gopal and Pala, Nazir and Vineeta, Vineeta (ed.) Forest, Climate Change and Biodiversity. pp. 263–286 (2018)

  16. Bourne, P.: Observations of branch growth in a sympodial bamboo, Bambusa stenostachya (Ðằng ngà), in Binh Duong Province, Vietnam

  17. Nghia, N.H.: Status of forest genetic resources conservation and management in Vietnam. Forest genetic resources conservation and management, pp. 290–301. IPGRI-APO, Serdang (2004)

    Google Scholar 

  18. Abioye, A.M., Ani, F.N.: Recent development in the production of activated carbon electrodes from agricultural waste biomass for supercapacitors: a review. Renew. Sust. Energ. Rev. 52, 1282–1293 (2015). doi:https://doi.org/10.1016/j.rser.2015.07.129

    Article  Google Scholar 

  19. Yamauchi, M., Sakamoto, M., Yamada, M., Hara, H., Taib, S.M., Rezania, S., Fadhil, M.D.M., Hanafi, F.H.M.: Cultivation of oyster mushroom (Pleurotus ostreatus) on fermented moso bamboo sawdust. J. King Saud Univ. Sci. 31(4), 490–494 (2019). doi:https://doi.org/10.1016/j.carbpol.2014.05.025

    Article  Google Scholar 

  20. Shimokawa, T., Ishida, M., Yoshida, S., Nojiri, M.: Effects of growth stage on enzymatic saccharification and simultaneous saccharification and fermentation of bamboo shoots for bioethanol production. Bioresour. Technol. 100(24), 6651–6654 (2009). doi:https://doi.org/10.1016/j.biortech.2009.06.100

    Article  Google Scholar 

  21. Kobayashi, F., Take, H., Asada, C., Nakamura, Y.: Methane production from steam-exploded bamboo. J. Biosci. Bioeng. 97(6), 426–428 (2004). doi:https://doi.org/10.1016/S1389-1723(04)70231-5

    Article  Google Scholar 

  22. Monlau, F., Barakat, A., Trably, E., Dumas, C., Steyer, J.-P., Carrère, H.: Lignocellulosic materials into biohydrogen and biomethane: impact of structural features and pretreatment. Crit. Rev. Env. Sci. Tec. 43(3), 260–322 (2013). doi:https://doi.org/10.1080/10643389.2011.604258

    Article  Google Scholar 

  23. Andreani, C.L., Torres, D.G., Schultz, L., Carvalho, K.Q.d., Gomes, S.D.: Hydrogen production from cassava processing wastewater in an anaerobic fixed bed reactor with bamboo as a support material. Eng. Agr-Jaboticabal. 35(3), 578–587 (2015). doi:https://doi.org/10.1590/1809-4430-eng.agric.v35n3p578-587/2015

    Article  Google Scholar 

  24. He, M., Wang, J., Qin, H., Shui, Z., Zhu, Q., Wu, B., Tan, F., Pan, K., Hu, Q., Dai, L., Wang, W., Tang, X., Hu, G.Q.: Bamboo: A new source of carbohydrate for biorefinery. Carbohydr. Polym. 111, 645–654 (2014). doi:https://doi.org/10.1016/j.carbpol.2014.05.025

    Article  Google Scholar 

  25. Borand, M.N., Karaosmanoğlu, F.: Effects of organosolv pretreatment conditions for lignocellulosic biomass in biorefinery applications: a review. J. Renew. Sustain. Ener. 10(3), 033104 (2018). doi:https://doi.org/10.1063/1.5025876

    Article  Google Scholar 

  26. Kumar, G., Bakonyi, P., Periyasamy, S., Kim, S., Nemestóthy, N., Bélafi-Bakó, K.: Lignocellulose biohydrogen: Practical challenges and recent progress. Renew. Sust. Energ. Rev. 44, 728–737 (2015). doi:https://doi.org/10.1016/j.rser.2015.01.042

    Article  Google Scholar 

  27. Kumar, P., Barrett, D.M., Delwiche, M.J., Stroeve, P.: Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Ind. Eng. Chem. Res. 48(8), 3713–3729 (2009). doi:https://doi.org/10.1021/ie801542g

    Article  Google Scholar 

  28. Brodeur, G., Yau, E., Badal, K., Collier, J., Ramachandran, K., Ramakrishnan, S.: Chemical and physicochemical pretreatment of lignocellulosic biomass: a review. Enzyme Res. (2011). https://doi.org/10.4061/2011/787532

    Article  Google Scholar 

  29. Ewanick, S., Bura, R.: 1-Hydrothermal pretreatment of lignocellulosic biomass. In: Waldron, K. (ed.) Bioalcohol Production, pp. 3–23. Woodhead Publishing, Cambridge (2010)

    Chapter  Google Scholar 

  30. Sluiter, A.: Determination of structural carbohydrates and lignin in biomass: laboratory analytical procedure (LAP): Issue Date, April 2008, Revision Date: August 2012 (Version 08-03-2012). National Renewable Energy Laboratory, (2012)

  31. Li, J., Xu, Y., Zhang, M., Wang, D.: Determination of Furfural and 5-hydroxymethylfurfural in biomass hydrolysate by high-performance liquid chromatography. Energy Fuels 31(12), 13769–13774 (2017). https://doi.org/10.1021/acs.energyfuels.7b02827

    Article  Google Scholar 

  32. Zhang, K., Li, H., Xiao, L.-P., Wang, B., Sun, R.-C., Song, G.: Sequential utilization of bamboo biomass through reductive catalytic fractionation of lignin. Bioresour. Technol. 285, 121335 (2019). doi:https://doi.org/10.1016/j.biortech.2019.121335

    Article  Google Scholar 

  33. Li, Z., Fei, B., Jiang, Z.: Effect of steam explosion pretreatment on bamboo for enzymatic hydrolysis and ethanol fermentation. BioResources 10(1), 11 (2014)

    Google Scholar 

  34. Nurul Fazita, M., Jayaraman, K., Bhattacharyya, D., Mohamad Haafiz, M., Saurabh, C.K., Hussin, M.H., HPS, A.K.: Green composites made of bamboo fabric and poly (lactic) acid for packaging applications—a review. Materials 9(6), 435 (2016). https://doi.org/10.3390/ma9060435

    Article  Google Scholar 

  35. Kuttiraja, M., Sindhu, R., Varghese, P.E., Sandhya, S.V., Binod, P., Vani, S., Pandey, A., Sukumaran, R.K.: Bioethanol production from bamboo (Dendrocalamus sp.) process waste. Biomass Bioenergy. 59, 142–150 (2013). doi:https://doi.org/10.1016/j.biombioe.2013.10.015

    Article  Google Scholar 

  36. Xu, G., Shi, Z., Zhao, Y., Deng, J., Dong, M., Liu, C., Murugadoss, V., Mai, X., Guo, Z.: Structural characterization of lignin and its carbohydrate complexes isolated from bamboo (Dendrocalamus sinicus). Int. J. Biol. Macromol. 126, 376–384 (2019). https://doi.org/10.1016/j.ijbiomac.2018.12.234

    Article  Google Scholar 

  37. Yamashita, Y., Shono, M., Sasaki, C., Nakamura, Y.: Alkaline peroxide pretreatment for efficient enzymatic saccharification of bamboo. Carbohydr. Polym. 79(4), 914–920 (2010). doi:https://doi.org/10.1016/j.carbpol.2009.10.017

    Article  Google Scholar 

  38. Li, Z., Jiang, Z., Fei, B., Cai, Z., Pan, X.: Comparison of bamboo green, timber and yellow in sulfite, sulfuric acid and sodium hydroxide pretreatments for enzymatic saccharification. Bioresour. Technol. 151, 91–99 (2014). doi:https://doi.org/10.1016/j.biortech.2013.10.060

    Article  Google Scholar 

  39. Li, Y., Zhang, J., Chang, S.X., Jiang, P., Zhou, G., Fu, S., Yan, E., Wu, J., Lin, L.: Long-term intensive management effects on soil organic carbon pools and chemical composition in Moso bamboo (Phyllostachys pubescens) forests in subtropical China. For. Ecol. Manage. 303, 121–130 (2013). https://doi.org/10.1016/j.foreco.2013.04.021

    Article  Google Scholar 

  40. Huang, C., Lin, W., Lai, C., Li, X., Jin, Y., Yong, Q.: Coupling the post-extraction process to remove residual lignin and alter the recalcitrant structures for improving the enzymatic digestibility of acid-pretreated bamboo residues. Bioresour. Technol. 285, 121355 (2019). doi:https://doi.org/10.1016/j.biortech.2019.121355

    Article  Google Scholar 

  41. Jung, Y.H., Kim, K.H.: Chap. 3 - Acidic Pretreatment. In: Pandey, A., Negi, S., Binod, P., Larroche, C. (eds.) Pretreatment of Biomass, pp. 27–50. Elsevier, Amsterdam (2015)

    Chapter  Google Scholar 

  42. Liu, C.-G., Li, K., Wen, Y., Geng, B.-Y., Liu, Q., Lin, Y.-H.: Chapter One - Bioethanol: New opportunities for an ancient product. In: Li, Y., Ge, X. (eds.) Advances in Bioenergy, pp. 1–34. Elsevier, Amsterdam (2019)

  43. Modenbach, A.A., Nokes, S.E.: Effects of sodium hydroxide pretreatment on structural components of biomass. Trans ASABE 57(4), 1187–1198 (2014). https://doi.org/10.13031/trans.57.10046

    Article  Google Scholar 

  44. Azeez, M.A., Orege, J.I.: Bamboo, its chemical modification and products. Bamboo-Current and Future Prospects (2018). https://doi.org/10.5772/intechopen.76359

  45. Li, M., Fan, Y., Sun, R., Xu, F.: Characterization of extracted lignin of bamboo (Neosinocalamus affinis) pretreated with sodium hydroxide/urea solution at low temperature. BioResources. 5(3), 1762–1778 (2010). doi:https://doi.org/10.15376/biores.5.3.1762-1778

    Article  Google Scholar 

  46. Carvalho, A.F.A., Marcondes, W.F., de Oliva Neto, P., Pastore, G.M., Saddler, J.N., Arantes, V.: The potential of tailoring the conditions of steam explosion to produce xylo-oligosaccharides from sugarcane bagasse. Bioresour. Technol. 250, 221–229 (2018). doi:https://doi.org/10.1016/j.biortech.2017.11.041

    Article  Google Scholar 

  47. Chang, M., Li, D., Wang, W., Chen, D., Zhang, Y., Hu, H., Ye, X.: Comparison of sodium hydroxide and calcium hydroxide pretreatments on the enzymatic hydrolysis and lignin recovery of sugarcane bagasse. Bioresour. Technol. 244, 1055–1058 (2017). doi:https://doi.org/10.1016/j.biortech.2017.08.101

    Article  Google Scholar 

  48. Xin, D., Yang, Z., Liu, F., Xu, X., Zhang, J.: Comparison of aqueous ammonia and dilute acid pretreatment of bamboo fractions: structure properties and enzymatic hydrolysis. Bioresour. Technol. 175, 529–536 (2015). doi:https://doi.org/10.1016/j.biortech.2014.10.160

    Article  Google Scholar 

  49. Dai, H.N., Le, T.K.N., Huynh, T.K.T., Nguyen, D.T.A., Tran, V.M.: Thermo-pretreatment on bamboo biomass with amonia. Vietnam J. Sci. Technol. 54(4B), 216–224 (2016). doi:https://doi.org/10.15625/2525-2518/54/4B/12044

    Article  Google Scholar 

  50. Akobi, C., Hafez, H., Nakhla, G.: The impact of furfural concentrations and substrate-to-biomass ratios on biological hydrogen production from synthetic lignocellulosic hydrolysate using mesophilic anaerobic digester sludge. Bioresour. Technol. 221, 598–606 (2016). doi:https://doi.org/10.1016/j.biortech.2016.09.067

    Article  Google Scholar 

Download references

Acknowledgements

This research is funded by Vietnam National University HoChiMinh City (VNU-HCM) under grant number C2017-18-04.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ngan Hue Dai.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dai, N.H., Huynh, K.T.T., Nguyen, T.A.D. et al. Hydrothermal and Steam Explosion Pretreatment of Bambusa stenostachya Bamboo. Waste Biomass Valor 12, 4103–4112 (2021). https://doi.org/10.1007/s12649-020-01299-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-020-01299-5

Keywords

Navigation