Skip to main content
Log in

g factor of the \(12^+\) K-isomer in \(^{174}\)W

  • Regular Article - Experimental Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

The g factor of the \(12^+\) K-isomer in \(^{174}\)W has been measured by means of the time-differential perturbed angular distribution technique as \(g(12^+)=+0.304(11)\). In addition, the half-life of the isomer has been remeasured as \(T_{1/2}(12^+)=124(8)\) ns, in agreement with the literature value and confirming the anomalous hindrance F of the E2 transition to the \(10^+\) level of the ground state band with respect to the \(\gamma \)-tunnelling model prediction. The measured g factor has been compared with estimates based on experimental g factors from odd-mass isotopes in the same mass region and with Nilsson model calculations. The results establish unique features of the \(12^+\) K-isomer in \(^{174}\)W, which can possess a non-pure intrinsic configuration and/or can be characterised by values of the intrinsic quadrupole moment \(Q_0\) and the rotational g factor \(g_R\) significantly different with respect to the majority of K-isomers at mass \(A \approx 180\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: The dataset analyzed during the current study is available from the corresponding author on reasonable request.]

Notes

  1. The \(8^-\) level at 2268 keV with \(T_{1/2} = 158(3)\) ns [18] is fed from the the \(K=12^+\) isomer (see Fig. 1). For this reason, and also because of the chosen value of the magnetic field (optimized for the \(K=12^+\) isomer), the level of statistics achieved in the present experiment prevented the determination of the g factor for the \(K=8^-\) isomer.

  2. In the case of a state with \(K=1/2\), instead of using Eq. 4, the g factor is calculated with the equation 4-88 of Ref. [33]:

    $$\begin{aligned} g=g_R+\frac{g_K-g_R}{4I(I+1)}\left[ 1+\left( 2I+1\right) \left( -1\right) ^{I+\frac{1}{2}}b_0\right] \end{aligned}$$
    (6)

    where \(b_0\) is the magnetic decoupling parameter.

  3. It should be noted that if the band built on the \(K=12^+\) isomer is affected by Coriolis mixing, the \(\left| (g_K-g_R) /Q_0\right| \) ratio determined from the excited states in the band in Ref. [18] could be different than the one of the band head. This would be particularly true if the \(K=12^+\) isomer configuration includes orbits with \(i_{13/2}\) neutron parentage, such as \(7/2^+[633]\) or \(5/2^+[642]\). As discussed in Ref. [36], the effect of Coriolis interactions could manifest as a renormalization of the \(g_R\) value. However, in the present discussion, it is assumed that the effect of the Coriolis mixing in the band built on the \(K=12^+\) isomer is negligible and that \(g_R\) is the same in Eqs. 4 and 7.

References

  1. G.D. Dracoulis, P.M. Walker, F.G. Kondev, Rep. Prog. Phys. 79, 076301 (2016)

    ADS  Google Scholar 

  2. P.M. Walker, G.D. Dracoulis, Nature 399, 35 (1999)

    ADS  Google Scholar 

  3. O. Hahn, Chem. Ber. 54, 1131 (1921)

    Google Scholar 

  4. G. Gamow, Phys. Rev. 45, 728 (1934)

    ADS  Google Scholar 

  5. A. Bohr, B.R. Mottelson, K. Dan, Vidensk. Selsk. Mat. Fys. Medd. 30, 1 (1955)

    Google Scholar 

  6. M. Goldhaber, R.D. Hill, Rev. Mod. Phys. 24, 179 (1952)

    ADS  Google Scholar 

  7. C. Lizarazo et al., Phys. Rev. Lett. 124, 222501 (2020)

    ADS  Google Scholar 

  8. S. Leoni et al., Phys. Rev. Lett. 118, 162502 (2017)

    ADS  Google Scholar 

  9. A. Aprahamian, K. Langanke, M. Wiescher, Prog. Part. Nucl. Phys. 54, 535 (2005)

    ADS  Google Scholar 

  10. C.S. Cutler, H.M. Hennkens, N. Sisay, S. Huclier-Markai, S.S. Jurisson, Chem. Rev. 113, 858 (2013)

    Google Scholar 

  11. K.W.D. Ledingham, P. McKenna, R.P. Singhal, Science 300, 1107 (2003)

    ADS  Google Scholar 

  12. L. Marmugi, P.M. Walker, F. Renzoni, Phys. Lett. B 777, 281 (2018)

    ADS  Google Scholar 

  13. F.G. Kondev, G.D. Dracoulis, T. Kibédi, At. Data Nucl. Data Tables 103–4, 50 (2015)

    ADS  Google Scholar 

  14. F.G. Kondev, G.D. Dracoulis, T. Kibédi, At. Data Nucl. Data Tables 105–6, 105 (2015)

    Google Scholar 

  15. F.R. Xu, P.M. Walker, J.A. Sheikh, R. Wyss, Phys. Lett. B 435, 257 (1998)

    ADS  Google Scholar 

  16. K. Narimatsu, Y.R. Shimizu, T. Shizuma, Nucl. Phys. A 601, 69 (1996)

    ADS  Google Scholar 

  17. T. Bengtsson, R.A. Broglia, E. Vigezzi, F. Barranco, F. Dönau, J. Zhang, Phys. Rev. Lett. 62, 2448 (1989)

    ADS  Google Scholar 

  18. S.K. Tandel et al., Phys. Rev. C 73, 044306 (2006)

    ADS  Google Scholar 

  19. D.L. Balabanski et al., Phys. Rev. Lett. 86, 604 (2001)

    ADS  Google Scholar 

  20. P.M. Walker et al., Phys. Lett. B 408, 42 (1997)

    ADS  Google Scholar 

  21. G.D. Dracoulis, P.M. Walker, A. Johnston, J. Phys. G Nucl. Phys. 4, 713 (1978)

    ADS  Google Scholar 

  22. V. Vandone et al., Phys. Rev. C 88, 034312 (2013)

    ADS  Google Scholar 

  23. M. Ionescu-Bujor et al., Phys. Lett. B 495, 289 (2000)

    ADS  Google Scholar 

  24. M. Ionescu-Bujor et al., Phys. Lett. B 541, 219 (2002)

    ADS  Google Scholar 

  25. M. Ionescu-Bujor et al., Phys. Lett. B 650, 141 (2007)

    ADS  Google Scholar 

  26. M. Ionescu-Bujor et al., Phys. Rev. C 81, 024323 (2010)

    ADS  Google Scholar 

  27. L. Arnold et al., IEEE Trans. Nucl. Sci. 53, 723 (2006)

    ADS  Google Scholar 

  28. E. Recknagel, Nuclear Spectroscopy and Reactions (J. Cerny, New York, 1974)

    Google Scholar 

  29. B. Crowell et al., Phys. Rev. C 53, 1173 (1996)

    ADS  Google Scholar 

  30. G. Georgiev, Ph.D. Thesis, Department of Physics, University of Leuven (2001)

  31. T. Yamazaki, Nucl. Data Sheets Sec. A 3, 1 (1967)

    Google Scholar 

  32. T.J. Gray et al., Phys. Rev. C 101, 054302 (2020)

    ADS  Google Scholar 

  33. A. Bohr, B.R. Mottelson, Nuclear Structure, vol. 2 (World Scientific, Singapore, 1975)

    MATH  Google Scholar 

  34. F. Boehm et al., Phys. Rev. Lett. 22, 627 (1966)

    Google Scholar 

  35. N.J. Stone, At. Data Nucl. Data Tables 90, 75 (2005)

    ADS  Google Scholar 

  36. A.E. Stuchbery, S.S. Anderssen, H.H. Bolotin, Nucl. Phys. A 669, 27 (2000)

    ADS  Google Scholar 

  37. P.M. Walker, D. Ward, O. Häusser, H.R. Andrews, T. Faestermann, Nucl. Phys. A 349, 1 (1980)

    ADS  Google Scholar 

  38. T.L. Khoo, G. Løvhøiden, Phys. Lett. B 67, 271 (1977)

    ADS  Google Scholar 

  39. G.D. Dracoulis et al., Phys. Rev. C 71, 044326 (2005)

    ADS  Google Scholar 

  40. V. Werner et al., Phys. Rev. C 93, 034323 (2016)

    ADS  Google Scholar 

  41. N.J. Stone, J.R. Stone, P.M. Walker, C.R. Bingham, Phys. Lett. B 726, 675 (2013)

    ADS  Google Scholar 

  42. T. Faestermann et al., Hyperfine Interact. 4, 216 (1978)

    ADS  Google Scholar 

  43. S.M. Mullins et al., Phys. Lett. B 393, 279 (1997)

    ADS  Google Scholar 

  44. G. Manning, J. Rogers, Nucl. Phys. 19, 675 (1960)

    Google Scholar 

  45. C. Broude et al., Phys. Lett. B 264, 17 (1991)

    ADS  Google Scholar 

  46. T. Bengtsson, I. Ragnarsson, Nucl. Phys. A 436, 14 (1985)

    ADS  Google Scholar 

Download references

Acknowledgements

We thankfully acknowledge the staff of the LNL Tandem-XTU accelerator for the high quality of the delivered \(^{16}\)O beam, M. Loriggiola for producing the target and the mechanical workshops of the INFN division of Florence for their crucial contribution. The contribution of A. Stuchbery in producing Table 1 and Fig. 6 is gratefully acknowledged. We are also grateful to M. Ionescu-Bujor and P.M. Walker for the fruitful discussions on both the data analysis and the interpretation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Benzoni.

Additional information

Communicated by Wolfram Korten

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rocchini, M., Nannini, A., Benzoni, G. et al. g factor of the \(12^+\) K-isomer in \(^{174}\)W. Eur. Phys. J. A 56, 289 (2020). https://doi.org/10.1140/epja/s10050-020-00298-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-020-00298-3

Navigation