Skip to main content
Log in

Predicting Extreme Solar Flare Events Using Lu and Hamilton Avalanche Model

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

Solar flares are the most powerful events in the solar atmosphere, releasing a huge amount of energy in a few minutes. Any progress in predicting when a flare of a big magnitude will occur is extremely important to evaluate the risk related to space weather. The Lu and Hamilton (Astrophys. J. Lett. 380, L89, 1991) self-organized criticality (SOC) model for solar flares is the one most conspicuous amongst the several avalanche models for flares that have been developed in the last 30 years. It has been very successful in reproducing some of the characteristic features of observed flares (e.g. probability density function of flare energy) and in the last years has been explored as a way of predicting extreme flaring events.

In this work, we study the predicting capabilities of Lu and Hamilton model by assessing the proximity to stability of the 2D lattice and studying the influence of the lattice structure in the generation of large avalanches. We find that the mean value of the lattice nodes bears enough information to predict large avalanches in more than half of the cases, making it a reliable precursor for forecasting purposes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  • Aschwanden, M.: 2011, Self-Organized Criticality in Astrophysics, Springer Praxis Books, Springer, Berlin. http://libproxy.bus.umich.edu/login?url=https://link.springer.com/openurl?genre=book&isbn=978-3-642-15000-5.

    Book  Google Scholar 

  • Aschwanden, M.J.: 2019, Self-organized criticality in solar and stellar flares: Are extreme events scale-free? Astrophys. J. 880(2), 105. DOI. ADS.

    Article  ADS  Google Scholar 

  • Aschwanden, M.J., Parnell, C.E.: 2002, Nanoflare statistics from first principles: Fractal geometry and temperature synthesis. Astrophys. J. 572(2), 1048. DOI.

    Article  ADS  Google Scholar 

  • Bak, P., Tang, C., Wiesenfeld, K.: 1987, Self-organized criticality: An explanation of the 1/f noise. Phys. Rev. Lett. 59(4), 381. DOI. ADS.

    Article  ADS  Google Scholar 

  • Barnes, G., Leka, K.D., Schrijver, C.J., Colak, T., Qahwaji, R., Ashamari, O.W., Yuan, Y., Zhang, J., McAteer, R.T.J., Bloomfield, D.S., Higgins, P.A., Gallagher, P.T., Falconer, D.A., Georgoulis, M.K., Wheatland, M.S., Balch, C., Dunn, T., Wagner, E.L.: 2016, A comparison of flare forecasting methods. I. Results from the “all-clear” workshop. Astrophys. J. 829(2), 89. DOI. ADS.

    Article  ADS  Google Scholar 

  • Bélanger, E., Vincent, A., Charbonneau, P.: 2007, Predicting solar flares by data assimilation in avalanche models. I. Model design and validation. Solar Phys. 245(1), 141. DOI. ADS.

    Article  ADS  Google Scholar 

  • Bennet, A., Kaye, R.: 1792, A new suspension of the magnetic needle, intended for the discovery of minute quantities of magnetic attraction: Also an air vane of great sensibility; with new experiments on the magnetism of iron filings and brass. Phil. Trans. Roy. Soc. London 82, 81. ADS.

    Article  Google Scholar 

  • Brueckner, G.E., Delaboudiniere, J.-P., Howard, R.A., Paswaters, S.E., St. Cyr, O.C., Schwenn, R., Lamy, P., Simnett, G.M., Thompson, B., Wang, D.: 1998, Geomagnetic storms caused by coronal mass ejections (CMEs): March 1996 through June 1997. Geophys. Res. Lett. 25(15), 3019. DOI. ADS.

    Article  ADS  Google Scholar 

  • Charbonneau, P., McIntosh, S.W., Liu, H.-L., Bogdan, T.J.: 2001, Avalanche models for solar flares (Invited Review). Solar Phys. 203, 321. DOI.

    Article  ADS  Google Scholar 

  • Cliver, E.W.: 1994, Solar activity and geomagnetic storms: The first 40 years. Eos Trans. 75(49), 569. DOI. ADS.

    Article  ADS  Google Scholar 

  • Dennis, B.R.: 1985, Solar hard X-ray bursts. Solar Phys. 100, 465. DOI. ADS.

    Article  ADS  Google Scholar 

  • Dmitruk, P., Gómez, D.O.: 1997, Turbulent coronal heating and the distribution of nanoflares. Astrophys. J. 484(1), L83. DOI.

    Article  ADS  Google Scholar 

  • Fletcher, L., Dennis, B.R., Hudson, H.S., Krucker, S., Phillips, K., Veronig, A., Battaglia, M., Bone, L., Caspi, A., Chen, Q., Gallagher, P., Grigis, P.T., Ji, H., Liu, W., Milligan, R.O., Temmer, M.: 2011, An observational overview of solar flares. Space Sci. Rev. 159(1–4), 19. DOI. ADS.

    Article  ADS  Google Scholar 

  • Georgoulis, M.K.: 2012, Are solar active regions with major flares more fractal, multifractal, or turbulent than others? Solar Phys. 276(1–2), 161. DOI. ADS.

    Article  ADS  Google Scholar 

  • Giovanelli, R.G.: 1939, The relations between eruptions and sunspots. Astrophys. J. 89, 555. DOI. ADS.

    Article  ADS  Google Scholar 

  • Karakatsanis, L.P., Pavlos, G.P., Xenakis, M.N.: 2013, Tsallis non-extensive statistics, intermittent turbulence, SOC and chaos in the solar plasma. Part two: Solar flares dynamics. Physica A 392(18), 3920. DOI. ADS.

    Article  ADS  Google Scholar 

  • Lu, E.T.: 1995, The statistical physics of solar active regions and the fundamental nature of solar flares. Astrophys. J. Lett. 446, L109. DOI. ADS.

    Article  ADS  Google Scholar 

  • Lu, E.T., Hamilton, R.J.: 1991, Avalanches and the distribution of solar flares. Astrophys. J. Lett. 380, L89. DOI.

    Article  ADS  Google Scholar 

  • Mendoza, M., Kaydul, A., de Arcangelis, L., Andrade, J.J.S., Herrmann, H.J.: 2014, Modelling the influence of photospheric turbulence on solar flare statistics. Nat. Commun. 5, 5035. DOI. ADS.

    Article  ADS  Google Scholar 

  • Morales, L., Charbonneau, P.: 2008, Self-organized critical model of energy release in an idealized coronal loop. Astrophys. J. 682(1), 654. DOI. ADS.

    Article  ADS  Google Scholar 

  • Parker, E.N.: 1988, Nanoflares and the solar X-ray corona. Astrophys. J. 330, 474. DOI. ADS.

    Article  ADS  Google Scholar 

  • Ramos, O., Altshuler, E., Måløy, K.J.: 2009, Avalanche prediction in a self-organized pile of beads. Phys. Rev. Lett. 102(7), 078701. DOI. ADS.

    Article  ADS  Google Scholar 

  • Sammis, C.G., Smith, S.W.: 1999, Seismic cycles and the evolution of stress correlation in cellular automaton models of finite fault networks. Pure Appl. Geophys. 155(2–4), 307. DOI. ADS.

    Article  ADS  Google Scholar 

  • Sarlis, N.V., Christopoulos, S.-R.G.: 2012, Predictability of the coherent-noise model and its applications. Phys. Rev. E 85(5), 051136. DOI. ADS.

    Article  ADS  Google Scholar 

  • Shibata, K., Magara, T.: 2011, Solar flares: Magnetohydrodynamic processes. Living Rev. Solar Phys. 8(1), 6. DOI. ADS.

    Article  ADS  Google Scholar 

  • Strugarek, A., Charbonneau, P.: 2014, Predictive capabilities of avalanche models for solar flares. Solar Phys. 289(11), 4137. DOI. ADS.

    Article  ADS  Google Scholar 

  • Viitanen, L., Ovaska, M., Alava, M.J., Karppinen, P.: 2017, Predicting crackling noise in compressional deformation. J. Stat. Mech. Theory Exp. 5(5), 053401. DOI. ADS.

    Article  MATH  Google Scholar 

  • Wheatland, M.S.: 2005, A statistical solar flare forecast method. Adv. Space Res. 3(7), S07003. DOI. ADS.

    Article  Google Scholar 

Download references

Acknowledgements

Research reported in this publication was supported by Agencia Nacional de Promoción Científica y Tecnológica grant PICT-1707-2015 and Consejo Nacional de Investigaciones Científicas y Ténicas PIP 11220150100324CO.

Author information

Authors and Affiliations

Authors

Ethics declarations

Disclosure of potential conflict of interest

The authors declare there are no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article belongs to the Topical Collection:

Towards Future Research on Space Weather Drivers

Guest Editors: Hebe Cremades and Teresa Nieves-Chinchilla

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morales, L.F., Santos, N.A. Predicting Extreme Solar Flare Events Using Lu and Hamilton Avalanche Model. Sol Phys 295, 155 (2020). https://doi.org/10.1007/s11207-020-01713-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11207-020-01713-0

Keywords

Navigation