Skip to main content
Log in

Predictions on structural, electronic, magnetic and thermal properties of new Heusler alloys Cr\(_{{{2}}}\)NbSi\(_{{1-x}}\)Ge\(_{{x }}\) from first-principles calculations

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

In this study, by using full-potential linearised augmented plane wave (FP-LAPW) method with the generalised gradient approximation (GGA) based on density functional theory (DFT), the structural, electronic, elastic and magnetic properties of the Heusler alloys Cr\(_{\mathrm {2}}\)NbSi\(_{{1-x}}\)Ge\(_{x}\) have been evaluated. The AlCu\(_{\mathrm {2}}\)Mnl-type structure is more stable than the CuHg\(_{\mathrm {2}}\)Ti-type structure at equilibrium volume for the compounds. The ground-state properties of our alloys including the lattice parameter and bulk modulus were calculated. In view of Poisson’s and Pugh’s ratio, the ductility and brittleness of Cr\(_{\mathrm {2}}\)NbSi\(_{{1-x}}\)Ge\(_{x}\) has been analysed. The mechanical stability is maintained throughout the pressure range with high value of Debye temperature. The electronic band structures and density of states of our compounds show a half metallic character with total magnetic moments, −3.00 \({\mu }_{\mathrm {B}}\) per formula unit with indirect band gap, \(E_\mathrm{g}\) \(=\) 0.152 eV and 0.262 eV for Cr\(_{\mathrm {2}}\)NbSi and Cr\(_{\mathrm {2}}\)NbGe respectively. Furthermore, we have analysed the thermal properties by the quasi-harmonic Debye model. Through the obtained results, we can say that these compounds can be strong candidates for future spintronic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. R A de Groot, F M Mueller, P G van Engen and K H J Buschow, Phys. Rev. Lett. 50, 2024 (1983)

    Article  ADS  Google Scholar 

  2. M I Katsnelson, V Yu Irkhin, L Chioncel, A I Lichtenstein and R A de Groot, Rev. Mod. Phys. 80, 315 (2008)

    Article  ADS  Google Scholar 

  3. X-Q Chen, R Podloucky and P Rogl, J. Appl. Phys. 100, 113901 (2006)

    Article  ADS  Google Scholar 

  4. H C Kandpal, G H Fecher and C Felser, J. Phys. D 40, 1507 (2007)

    Article  ADS  Google Scholar 

  5. G D Liu, X F Dai, H Y Lui, J L Chen, Y XLi, G Xiao and G H Wu, Phys. Rev. B 77, 14424 (2008)

    Article  ADS  Google Scholar 

  6. S Chadov, T Graf, K Chadova, X Dai, F Casper, G H Fecher and C Felser, Phys. Rev. Lett. 107, 047202 (2011)

    Article  ADS  Google Scholar 

  7. Közdoğan and I Galanakis, J. Magn. Magn. Mater. 321, L34 (2009)

  8. H Luo, L Ma, Z Zhu, G Wu, H Liu, J Qu and Y Li, Physica B 403, 1797 (2008)

    Article  ADS  Google Scholar 

  9. K H Sadeghi and F Ahmadian, PramanaJ. Phys. 90: 16 (2018)

    Article  ADS  Google Scholar 

  10. T Graf, C Felser and S S P Parkin, Solid State Chem. 39, 1 (2011)

    Article  Google Scholar 

  11. K Özdogan, I Galanakis, E Sasioglu and B Aktas, J. Phys. Condens. Mater. 18, 2905 (2006)

    Article  ADS  Google Scholar 

  12. W E Pickett and J S Moodera, Phys. Today 54, 39 (2001)

    Article  ADS  Google Scholar 

  13. N Shutoh and S Sakurada, J. Alloys Compd. 389, 204 (2005)

    Article  Google Scholar 

  14. C S Lue and Y-K Kuo, Phys. Rev. B 66, 085121 (2002)

    Article  ADS  Google Scholar 

  15. J Winterlik, G H Fecher and C Felser, Solid State Commun. 145, 475 (2008)

    Article  ADS  Google Scholar 

  16. X Dai, G Liu, G H Fecher, C Felser, Y Li and H Liu, J. Appl. Phys. 105, 07E901 (2009)

    Article  Google Scholar 

  17. G Y Gao, L Hu, K L Yao, B Luo and N Liu, J. Alloys Compd. 551, 539 (2013)

    Article  Google Scholar 

  18. P Klaer, B Balke, V Alijani, J Winterlik, G H Fecher, C Felser and H J Elmers, Phys. Rev. B 84, 144413 (2011)

    Article  ADS  Google Scholar 

  19. V Alijani, J Winterlik, G H Fecher, S S Naghavi and C Felser, Phys. Rev. B 83, 184428 (2011)

    Article  ADS  Google Scholar 

  20. M Parsons, J Grandle, B Dennis, K Neumann and K Ziebeck, J. Magn. Magn. Mater. 185, 140 (1995)

    Google Scholar 

  21. E P Wohlfahrth and K H J Bushow, Ferromagnetic materials (Elsevier, Amsterdam, 1998) Vol. 4

    Google Scholar 

  22. H Rached, D Rached, R Khenata, A H Reshak and M Rabah, Phys. Status Solidi B 246, 1580 (2009)

    Article  ADS  Google Scholar 

  23. I Asfour, H Rached, S Benalia and D Rached, J. Alloys. Compd. 676, 440 (2016)

    Article  Google Scholar 

  24. T Roy and A Chakrabarti, PramanaJ. Phys. 89: 6 (2017)

    Article  ADS  Google Scholar 

  25. W Kohn and L J Sham, Phys. Rev. 140, A1133 (1965)

    Article  ADS  Google Scholar 

  26. M Petersen, F Wagner, L Hufnagel, M Scheffler, P Blaha and K Schwarz, Comput. Phys. Commun.126, 294 (2000)

    Article  ADS  Google Scholar 

  27. S E Kulkova, S S Kulkov and A V Subashiev, Comput. Mater. Sci. 36, 249 (2006)

    Article  Google Scholar 

  28. M A Blanco, A Martín Pendas, E Francisco, J M Recio and R Franco, J. Mol. Struct. Theochem. 368, 245 (1996)

  29. M Flórez, J M Recio, E Francisco, M A Blanco and A Martín Pendas, Phys. Rev. B 66, 144112 (2002)

  30. E Francisco, J M Recio, M A Blanco and A Martín Pendas, J. Phys. Chem. 102, 1595 (1998)

  31. E Francisco, M A Blanco and G Sanjurjo, Phys. Rev. B 63, 094107 (2001)

    Article  ADS  Google Scholar 

  32. F D Murnaghan, Proc. Natl. Acad. Sci. USA 30, 5390 (1944)

    Google Scholar 

  33. L Vegard, Z. Phys. 5, 17 (1921)

    Article  ADS  Google Scholar 

  34. M J Mehl, Phys. Rev. B 47, 2493 (1993)

    Article  ADS  Google Scholar 

  35. I Asfour, H Rached, D Rached, M Caid and M Labair, J. Alloys Compd. 742, 736 (2018)

    Article  Google Scholar 

  36. M Born and K Huang, Dynamical theory of crystal lattices, Oxford classic texts in the physical sciences (Oxford University Press, Oxford 1998)

  37. J F Nye, Physical properties of crystals: Their representation by tensors and matrices (Oxford University Press, Oxford 1985)

  38. S F Pugh, Phil. Mag. 45, 823 (1954)

    Article  Google Scholar 

  39. D G Pettifor, Mater. Sci. Technol. 8, 345 (1992)

    Article  Google Scholar 

  40. F Peng, D Chen and X D Yang, Solid State Commun. 149, 2135 (2009)

    Article  ADS  Google Scholar 

  41. F Chu, Y He, D J Thome and T E Mitchell, Scr. Metall. Mater. 33, 1295 (1995)

    Article  Google Scholar 

  42. I Galanakis, Ph Mavropoulos and P H Dederichs, J. Phys. D 39, 765 (2006)

    Article  ADS  Google Scholar 

  43. M A Blanco, E Francisco and V Luana, Comput. Phys. Commun. 158, 57 (2004)

    Article  ADS  Google Scholar 

  44. A T Petit and P L Dulong, Ann. Chim. Phys. 10, 395 (1819)

    Google Scholar 

  45. P Debye, Ann. Phys. 344, 789 (1912)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I Asfour.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Asfour, I. Predictions on structural, electronic, magnetic and thermal properties of new Heusler alloys Cr\(_{{{2}}}\)NbSi\(_{{1-x}}\)Ge\(_{{x }}\) from first-principles calculations. Pramana - J Phys 94, 161 (2020). https://doi.org/10.1007/s12043-020-02021-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-020-02021-9

Keywords

PACS

Navigation