Skip to main content
Log in

Using a Lindbladian approach to model decoherence in two coupled nuclear spins via correlated phase damping and amplitude damping noise channels

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

In this work, we studied the relaxation dynamics of coherences of different orders present in a system of two coupled nuclear spins. We used a previously designed model for intrinsic noise present in such systems which considers the Lindblad master equation for Markovian relaxation. We experimentally created zero-, single- and double-quantum coherences in several two-spin systems and performed a complete state tomography and computed state fidelity. We experimentally measured the decay of zero- and double-quantum coherences in these systems. The experimental data fitted well to a model that considers the main noise channels to be a correlated phase damping (CPD) channel acting simultaneously on both spins in conjunction with a generalised amplitude damping channel acting independently on both spins. The differential relaxation of multiple-quantum coherences can be ascribed to the action of a CPD channel acting simultaneously on both the spins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. A Streltsov, G Adesso and M B Plenio, Rev. Mod. Phys. 89, 041003 (2017)

    ADS  Google Scholar 

  2. R R Ernst, G Bodenhausen and A Wokaun, Principles of NMR in one and two dimensions (Clarendon Press, 1990)

  3. J Tang and A Pines, J. Chem. Phys. 72, 3290 (1980)

    ADS  Google Scholar 

  4. M Schlosshauer, Rev. Mod. Phys. 76, 1267 (2005)

    ADS  Google Scholar 

  5. J Cavanagh, W Fairbrother, A Palmer and N Skelton, Protein NMR spectroscopy: Principles and practice (Elsevier Science, 1995)

  6. G Pileio, Prog. Nucl. Magn. Reson. Spect. 98–99, 1 (2017)

    ADS  Google Scholar 

  7. D Khurana and T Mahesh, J. Mag. Res. 284, 8 (2017)

    ADS  Google Scholar 

  8. D P Pires, I A Silva, E R deAzevedo, D O Soares-Pinto and J G Filgueiras, Phys. Rev. A 98, 032101 (2018)

  9. Z Tosner, T Vosegaard, C Kehlet, N Khaneja, S J Glaser and N C Nielsen, J. Magn. Reson. 197, 120 (2009)

    ADS  Google Scholar 

  10. A M Souza, G A Álvarez and D Suter, Philos. Trans. Roy. Soc. A 370, 4748 (2012)

    ADS  Google Scholar 

  11. H Singh, Arvind and K Dorai, Phys. Rev. A 90, 052329 (2014)

  12. S Pal, S Moitra, V S Anjusha, A Kumar and T S Mahesh, PramanaJ. Phys. 92: 26 (2019)

    ADS  Google Scholar 

  13. D Das, R Sengupta and Arvind, PramanaJ. Phys. 88: 82 (2017)

  14. K Hashimoto, K Murata and R Yoshii, J. High Energy Phys. 138, 1 (2017)

    Google Scholar 

  15. M Niknam, L F Santos and D G Cory, Phys. Rev. Res. 2, 013200 (2020)

    Google Scholar 

  16. J Li, R Fan, H Wang, B Ye, B Zeng, H Zhai, X Peng and J Du, Phys. Rev. X 7, 031011 (2017)

    Google Scholar 

  17. D Khurana, V R Krithika and T S Mahesh, arXiv e-prints, arXiv:1906.02692 (2019), arXiv:1906.02692 [quant-ph]

  18. N I Gershenzon, K Kobzar, B Luy, S J Glaser and T E Skinner, J. Magn. Reson. 188, 330 (2007)

    ADS  Google Scholar 

  19. N Khaneja, T Reiss, B Luy and S J Glaser, J. Magn. Reson. 162, 311 (2003)

    ADS  Google Scholar 

  20. N Khaneja and S Glaser, in 42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475), Vol. 1 (2003) pp. 422–427

  21. D Stefanatos, N Khaneja and S J Glaser, Phys. Rev. A 69, 022319 (2004)

    ADS  Google Scholar 

  22. N Khaneja, B Luy and S Glaser, Proc. Natl. Acad. Sci. USA 100, 13162 (2003)

    ADS  MathSciNet  Google Scholar 

  23. G Long, G Feng and P Sprenger, Quantum Engineering 1, e27 (2019)

    Google Scholar 

  24. K Li, Quantum Engineering 2, e28 (2019)

    Google Scholar 

  25. I Chakraborty, A Chakrabarti and R Bhattacharyya, Phys. Chem. Chem. Phys. 17, 32384 (2015)

    Google Scholar 

  26. D Khurana, G Unnikrishnan and T S Mahesh, Phys. Rev. A 94, 062334 (2016)

    ADS  Google Scholar 

  27. A Redfield, Advances in magnetic and optical resonance edited by J S Waugh (Academic Press, 1965) Vol. 1, pp. 1–32

  28. A Kumar, R C R Grace and P Madhu, Prog. Nucl. Magn. Reson. Spectr. 37, 191 (2000)

    Google Scholar 

  29. D Canet (ed.), Cross-relaxation and cross-correlation parameters in NMR, New Developments in NMR (The Royal Society of Chemistry, 2018) pp. P001–324

  30. J Jeener, A Vlassenbroek and P Broekaert, J. Chem. Phys. 103, 1309 (1995)

    ADS  Google Scholar 

  31. M Goldman, J. Magn. Reson. 149, 160 (2001)

    ADS  Google Scholar 

  32. D Abergel and A G Palmer, J. Phys. Chem. B 109, 4837 (2005)

    Google Scholar 

  33. G Lindblad, Commun. Math. Phys. 48, 119 (1976)

    ADS  Google Scholar 

  34. D O Soares-Pinto, M H Y Moussa, J Maziero, E R deAzevedo, T J Bonagamba, R M Serra and L C Ćeleri, Phys. Rev. A 83, 062336 (2011)

  35. N Boulant, T F Havel, M A Pravia and D G Cory, Phys. Rev. A 67, 042322 (2003)

    ADS  Google Scholar 

  36. T Xin, S-J Wei, J S Pedernales, E Solano and G-L Long, Phys. Rev. A 96, 062303 (2017)

    ADS  Google Scholar 

  37. T Yuwen, A Sekhar, A J Baldwin, P Vallurupalli and L E Kay, Angew. Chem. Int. Ed. 57, 16777 (2018)

    Google Scholar 

  38. Y Toyama, M Osawa, M Yokogawa and I Shimada, J. Am. Chem. Soc. 138, 2302 (2016), pMID: 26855064

  39. A M Childs, I L Chuang and D W Leung, Phys. Rev. A 64, 012314 (2001)

    ADS  Google Scholar 

  40. P Kumar and A Kumar, J. Magn. Reson. A 119, 29 (1996)

    ADS  Google Scholar 

  41. M A Nielsen and I L Chuang, Quantum computation and quantum information (Cambridge University Press, Cambridge, UK, 2000)

    MATH  Google Scholar 

  42. C Macchiavello and M F Sacchi, Phys. Rev. A 94, 052333 (2016)

    ADS  Google Scholar 

  43. C Addis, G Karpat, C Macchiavello and S Maniscalco, Phys. Rev. A 94, 032121 (2016)

    ADS  Google Scholar 

  44. E Jung, M-R Hwang, Y H Ju, M-S Kim, S-K Yoo, H Kim, D Park, J-W Son, S Tamaryan and S-K Cha, Phys. Rev. A 78, 012312 (2008)

    ADS  Google Scholar 

  45. S Daffer, K Wóodkiewicz, J D Cresser and J K McIver, Phys. Rev. A 70, 010304 (2004)

    ADS  Google Scholar 

  46. A Rivas, A D K Plato, S F Huelga and M B Plenio, New J. Phys. 12, 113032 (2010)

    ADS  Google Scholar 

  47. V Gorini, A Kossakowski and E C G Sudarshan, J. Math. Phys. 17, 821 (1976)

    ADS  Google Scholar 

  48. F M Paula, I A Silva, J D Montealegre, A M Souza, E R de Azevedo, R S Sarthour, A Saguia, I S Oliveira, D O Soares-Pinto, G Adesso and M S Sarandy, Phys. Rev. Lett. 111, 250401 (2013)

    ADS  Google Scholar 

  49. R Auccaise, L C Ćeleri, D O Soares-Pinto, E R deAzevedo, J Maziero, A M Souza, T J Bonagamba, R S Sarthour, I S Oliveira and R M Serra, Phys. Rev. Lett. 107, 140403 (2011)

  50. H Singh, Arvind and K Dorai, Europhys. Lett. 118, 50001 (2017)

  51. I A Silva, A M Souza, T R Bromley, M Cianciaruso, R Marx, R S Sarthour, I S Oliveira, R L Franco, S J Glaser, E R de Azevedo, D O Soares-Pinto and G Adesso, Phys. Rev. Lett. 117, 160402 (2016)

    ADS  Google Scholar 

  52. T Xin, L Hao, S-Y Hou, G-R Feng and G-L Long, Sci. China-Phys. Mech. Astron. 62, 960312 (2019)

    Google Scholar 

  53. J W Wen, X C Qiu, X Y Kong, X Y Chen, F Yang and G L Long, Sci. China-Phys. Mech. Astron. 63, 230321 (2020)

    Google Scholar 

  54. A Ghosh and A Kumar, J. Magn. Reson. 173, 125 (2005)

    ADS  Google Scholar 

  55. R Auccaise, J Teles, R Sarthour, T Bonagamba, I Oliveira and E deAzevedo, J. Magn. Reson. 192, 17 (2008)

  56. D Cory, M Price and T Havel, Physica D 120, 82 (1998)

    ADS  Google Scholar 

  57. G L Long, H Y Yan and Y Sun, J. Opt. B: Quantum Semiclass. Opt. 3, 376 (2001)

    ADS  Google Scholar 

  58. G M Leskowitz and L J Mueller, Phys. Rev. A 69, 052302 (2004)

    ADS  Google Scholar 

  59. H Singh, Arvind and K Dorai, Phys. Lett. A 380, 3051 (2016)

  60. R Jozsa, J. Mod. Opt. 41, 2315 (1994)

    ADS  Google Scholar 

  61. A Uhlmann, Rep. Math. Phys. 9, 273 (1976)

    ADS  Google Scholar 

Download references

Acknowledgements

All experiments were performed on a Bruker Avance-III 600 MHz FT-NMR spectrometer at the NMR Research Facility at IISER Mohali.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kavita Dorai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, H., Arvind & Dorai, K. Using a Lindbladian approach to model decoherence in two coupled nuclear spins via correlated phase damping and amplitude damping noise channels. Pramana - J Phys 94, 160 (2020). https://doi.org/10.1007/s12043-020-02027-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-020-02027-3

Keywords

PACS Nos

Navigation