Skip to main content

Advertisement

Log in

Microglia in Alzheimer's Disease: The Role of Stem Cell-Microglia Interaction in Brain Homeostasis

  • Review
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Microglia as resident cells of the brain can regulate neural development and maintenance of neuronal networks. Any types of pathologic events or changes in brain homeostasis are involved in the activation of microglia. This activation depends on the context, type of the stressor, or pathology. Due to the release of a plethora of substances such as chemokines, cytokines, and growth factors, microglia able to influence the pathologic outcome. In Alzheimer's disease (AD) condition, the deposition of amyloid‐β (Aβ) result in provokes the phenotypic activation of microglia and their elaboration of pro-inflammatory molecules. New investigations reveal that cellular therapy with stem cells might have therapeutic effects in preventing the pathogenesis of AD. Although many strategies have focused on the use of stem cells to regenerate damaged neurons, new researches have demonstrated the immune-regulatory feature of stem cells which can modulate the activity state of microglia as well as mediates neuroinflammation. Hence, understanding the molecular mechanisms involved in the brain homeostasis by the protective features of mesenchymal stem cells (MSCs) could lead to remedial treatment for AD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Ashe KH (2007) Cognitive impairment in transgenic Aβ and tau models of Alzheimer’s disease. Alzheimer’s disease. Springer, Boston, pp 77–91

    Chapter  Google Scholar 

  2. LaFerla FM, Oddo S (2005) Alzheimer’s disease: Aβ, tau and synaptic dysfunction. Trends Mol Med 11:170–186

    Article  CAS  PubMed  Google Scholar 

  3. Velazquez R, Ferreira E, Knowles S, Fux C, Rodin A, Winslow W, Oddo S (2019) Lifelong choline supplementation ameliorates Alzheimer’s disease pathology and associated cognitive deficits by attenuating microglia activation. Aging Cell 18:e13037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Velazquez R, Ferreira E, Winslow W, Dave N, Piras IS, Naymik M, Huentelman MJ, Tran A, Caccamo A, Oddo S (2019) Maternal choline supplementation ameliorates Alzheimer’s disease pathology by reducing brain homocysteine levels across multiple generations. Mol Psychiatry 8:1–10

    Google Scholar 

  5. Hansen DV, Hanson JE, Sheng M (2018) Microglia in Alzheimer’s disease. J Cell Biol 217:459–472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Tremblay MÈ, Stevens B, Sierra A, Wake H, Bessis A, Nimmerjahn A (2011) The role of microglia in the healthy brain. J Neurosci 31:16064–16079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kettenmann H, Kirchhoff F, Verkhratsky A (2013) Microglia: new roles for the synaptic stripper. Neuron 77:10–18

    Article  CAS  PubMed  Google Scholar 

  8. Lue LF, Beach TG, Walker DG (2019) Alzheimer’s disease research using human microglia. Cells 8:838

    Article  CAS  PubMed Central  Google Scholar 

  9. Song WM, Colonna M (2018) The microglial response to neurodegenerative disease. Advances in immunology, vol 139. Academic Press, Cambridge, pp 1–50

    Google Scholar 

  10. Dansokho C, Heneka MT (2018) Neuroinflammatory responses in Alzheimer’s disease. J Neural Transm 125:771–779

    Article  CAS  PubMed  Google Scholar 

  11. Bagheri-Mohammadi S, Karimian M, Alani B, Verdi J, Tehrani RM, Noureddini M (2019) Stem cell-based therapy for Parkinson’s disease with a focus on human endometrium-derived mesenchymal stem cells. J Cell Physiol 234:1326–1335

    Article  CAS  PubMed  Google Scholar 

  12. Bagheri-Mohammadi S, Alani B, Karimian M, Moradian-Tehrani R, Noureddini M (2019) Intranasal administration of endometrial mesenchymal stem cells as a suitable approach for Parkinson’s disease therapy. Mol Biol Rep 46:4293–4302

    Article  CAS  PubMed  Google Scholar 

  13. Wang SM, Lee CU, Lim HK (2019) Stem cell therapies for Alzheimer’s disease: is it time? Curr Opin Psychiatry 32:105–116

    Article  CAS  PubMed  Google Scholar 

  14. Sun Y, Zhang X, Li H, Xu S, Zhang X, Liu Y, Han M, Wen J (2018) Stemazole promotes survival and preserves stemness in human embryonic stem cells. FEBS J 285:531–541

    Article  CAS  PubMed  Google Scholar 

  15. Fakhoury M (2018) Microglia and astrocytes in Alzheimer’s disease: implications for therapy. Curr Neuropharmacol 16:508–518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ulland TK, Song WM, Huang SCC, Ulrich JD, Sergushichev A, Beatty WL, Loboda AA, Zhou Y, Cairns NJ, Kambal A et al (2017) TREM2 maintains microglial metabolic fitness in Alzheimer’s disease. Cell 170:649–663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ginhoux F, Lim S, Hoeffel G, Low D, Huber T (2013) Origin and differentiation of microglia. Front Cell Neurosci 7:45

    Article  PubMed  PubMed Central  Google Scholar 

  18. Hristovska I, Pascual O (2016) Deciphering resting microglial morphology and process motility from a synaptic prospect. Front Integr Neurosci 9:73

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Fakhoury M (2016) Immune-mediated processes in neurodegeneration: where do we stand? J Neurol 263:1683–1701

    Article  CAS  PubMed  Google Scholar 

  20. Kigerl KA, de Rivero Vaccari JP, Dietrich WD, Popovich PG, Keane RW (2014) Pattern recognition receptors and central nervous system repair. Exp Neurol 258:5–16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Town T, Nikolic V, Tan J (2005) The microglial" activation" continuum: from innate to adaptive responses. J Neuroinflamm 2:24

    Article  CAS  Google Scholar 

  22. Sierra A, Beccari S, Diaz-Aparicio I, Encinas JM, Comeau S, Tremblay MÈ (2014) Surveillance, phagocytosis, and inflammation: how never-resting microglia influence adult hippocampal neurogenesis. Neural Plast. https://doi.org/10.1155/2014/610343

    Article  PubMed  PubMed Central  Google Scholar 

  23. Shaked I, Porat Z, Gersner R, Kipnis J, Schwartz M (2004) Early activation of microglia as antigen-presenting cells correlates with T cell-mediated protection and repair of the injured central nervous system. J Neuroimmunol 146:84–93

    Article  CAS  PubMed  Google Scholar 

  24. Perry VH, Nicoll JA, Holmes C (2010) Microglia in neurodegenerative disease. Nat Rev Neurol 6:193

    Article  PubMed  Google Scholar 

  25. Cai Z, Hussain MD, Yan LJ (2014) Microglia, neuroinflammation, and beta-amyloid protein in Alzheimer’s disease. Int J Neurosci 124:307–321

    Article  CAS  PubMed  Google Scholar 

  26. Calsolaro V, Edison P (2016) Neuroinflammation in Alzheimer’s disease: current evidence and future directions. Alzheimer’s Dement 12:719–732

    Article  Google Scholar 

  27. Sominsky L, De Luca S, Spencer SJ (2018) Microglia: key players in neurodevelopment and neuronal plasticity. Int J Biochem Cell Biol 94:56–60

    Article  CAS  PubMed  Google Scholar 

  28. Milinkeviciute G, Henningfield CM, Muniak MA, Chokr SM, Green KN, Cramer KS (2019) Microglia regulate pruning of specialized synapses in the auditory brainstem. Front Neural Circuits 13:55

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Zhang L, Dong ZF, Zhang JY (2020) Immunomodulatory role of mesenchymal stem cells in Alzheimer’s disease. Life Sci 246:117405

    Article  CAS  PubMed  Google Scholar 

  30. Shen Z, Li X, Bao X, Wang R (2017) Microglia-targeted stem cell therapies for Alzheimer disease: a preclinical data review. J Neurosci Res 95:2420–2429

    Article  CAS  PubMed  Google Scholar 

  31. Claes C, Van den Daele J, Verfaillie CM (2018) Generating tissue-resident macrophages from pluripotent stem cells: lessons learned from microglia. Cell Immunol 330:60–67

    Article  CAS  PubMed  Google Scholar 

  32. Keren-Shaul H, Spinrad A, Weiner A, Matcovitch-Natan O, Dvir-Szternfeld R, Ulland TK, David E, Baruch K, Lara-Astaiso D, Toth B, Itzkovitz S (2017) A unique microglia type associated with restricting development of Alzheimer’s disease. Cell 169:1276–1290

    Article  CAS  PubMed  Google Scholar 

  33. Wojtera M, Sikorska B, Sobow T, Liberski PP (2005) Microglial cells in neurodegenerative disorders. Folia Neuropathol 43(4):311–321

    CAS  PubMed  Google Scholar 

  34. Cunningham C (2013) Microglia and neurodegeneration: the role of systemic inflammation. Glia 61:71–90

    Article  PubMed  Google Scholar 

  35. Thei L, Imm J, Kaisis E, Dallas ML, Kerrigan TL (2018) Microglia in Alzheimer’s disease: a role for ion channels. Front Neurosci 12:676

    Article  PubMed  PubMed Central  Google Scholar 

  36. Sarlus H, Heneka MT (2017) Microglia in Alzheimer’s disease. J Clin Invest 127:3240–3249

    Article  PubMed  PubMed Central  Google Scholar 

  37. Butovsky O, Jedrychowski MP, Moore CS, Cialic R, Lanser AJ, Gabriely G, Koeglsperger T, Dake B, Wu PM, Doykan CE et al (2014) Identification of a unique TGF-β–dependent molecular and functional signature in microglia. Nat Neurosci 17:131

    Article  CAS  PubMed  Google Scholar 

  38. Ransohoff RM, Brown MA (2012) Innate immunity in the central nervous system. J Clin Invest 122:1164–1171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Mammana S, Fagone P, Cavalli E, Basile MS, Petralia MC, Nicoletti F, Bramanti P, Mazzon E (2018) The role of macrophages in neuroinflammatory and neurodegenerative pathways of Alzheimer’s disease, amyotrophic lateral sclerosis, and multiple sclerosis: pathogenetic cellular effectors and potential therapeutic targets. Int J Mol Sci 19:831

    Article  PubMed Central  CAS  Google Scholar 

  40. Parkhurst CN, Yang G, Ninan I, Savas JN, Yates JR III, Lafaille JJ, Hempstead BL, Littman DR, Gan WB (2013) Microglia promote learning-dependent synapse formation through brain-derived neurotrophic factor. Cell 155:1596–1609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Bisht K, Sharma K, Tremblay MÈ (2018) Chronic stress as a risk factor for Alzheimer’s disease: roles of microglia-mediated synaptic remodeling, inflammation, and oxidative stress. Neurobiol Stress 9:9–21

    Article  PubMed  PubMed Central  Google Scholar 

  42. Hong S, Beja-Glasser VF, Nfonoyim BM, Frouin A, Li S, Ramakrishnan S, Merry KM, Shi Q, Rosenthal A, Barres BA et al (2016) Complement and microglia mediate early synapse loss in Alzheimer mouse models. Science 352:712–716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Paolicelli RC, Bolasco G, Pagani F, Maggi L, Scianni M, Panzanelli P, Giustetto M, Ferreira TA, Guiducci E, Dumas L et al (2011) Synaptic pruning by microglia is necessary for normal brain development. Science 333:1456–1458

    Article  CAS  PubMed  Google Scholar 

  44. Wehrspaun CC, Haerty W, Ponting CP (2015) Microglia recapitulate a hematopoietic master regulator network in the aging human frontal cortex. Neurobiol Aging 36:2443-e9

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Klegeris A, Bissonnette CJ, McGeer PL (2005) Modulation of human microglia and THP-1 cell toxicity by cytokines endogenous to the nervous system. Neurobiol Aging 26:673–682

    Article  CAS  PubMed  Google Scholar 

  46. Clayton KA, Van Enoo AA, Ikezu T (2017) Alzheimer’s disease: the role of microglia in brain homeostasis and proteopathy. Front Neurosci 11:680

    Article  PubMed  PubMed Central  Google Scholar 

  47. Cherry JD, Olschowka JA, O’Banion MK (2014) Neuroinflammation and M2 microglia: the good, the bad, and the inflamed. J Neuroinflamm 11:98

    Article  CAS  Google Scholar 

  48. Zhang Q, Wu HH, Wang Y, Gu GJ, Zhang W, Xia R (2016) Neural stem cell transplantation decreases neuroinflammation in a transgenic mouse model of Alzheimer’s disease. J Neurochem 136:815–825

    Article  CAS  PubMed  Google Scholar 

  49. Wei Y, Xie Z, Bi J, Zhu Z (2018) Anti-inflammatory effects of bone marrow mesenchymal stem cells on mice with Alzheimer’s disease. Exp Ther Med 16:5015–5020

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Terashima T, Nakae Y, Katagi M, Okano J, Suzuki Y, Kojima H (2018) Stem cell factor induces polarization of microglia to the neuroprotective phenotype in vitro. Heliyon 4:e00837

    Article  PubMed  PubMed Central  Google Scholar 

  51. Bagheri-Mohammadi S, Moradian-Tehrani R, Noureddini M, Alani B (2020) Novel application of adipose-derived mesenchymal stem cells via producing antiangiogenic factor TSP-1 in lung metastatic melanoma animal model. Biologicals. https://doi.org/10.1016/j.biologicals.2020.09.004

    Article  PubMed  Google Scholar 

  52. Zhang SC, Fedoroff S (1999) Expression of stem cell factor and c-kit receptor in neural cells after brain injury. Acta Neuropathol 97:393–398

    Article  CAS  PubMed  Google Scholar 

  53. Zhang SC, Fedoroff S (1997) Cellular localization of stem cell factor and c-kit receptor in the mouse nervous system. J Neurosci Res 47:1–15

    Article  CAS  PubMed  Google Scholar 

  54. Jin K, Mao XO, Sun Y, Xie L, Greenberg DA (2002) Stem cell factor stimulates neurogenesis in vitro and in vivo. J Clin Invest 110:311–319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Jaimes Y, Naaldijk Y, Wenk K, Leovsky C, Emmrich F (2017) Mesenchymal stem cell-derived microvesicles modulate lipopolysaccharides-induced inflammatory responses to microglia cells. Stem Cells 35:812–823

    Article  CAS  PubMed  Google Scholar 

  56. van Groen T, Kadish I, Wiesehan K, Funke SA, Willbold D (2009) In vitro and in vivo staining characteristics of small, fluorescent, Aβ42-binding D-enantiomeric peptides in transgenic AD mouse models. ChemMedChem 4:276–282

    Article  PubMed  CAS  Google Scholar 

  57. Wiley CA, Lopresti BJ, Venneti S, Price J, Klunk WE, DeKosky ST, Mathis CA (2009) Carbon 11–labeled Pittsburgh compound b and carbon 11–labeled (R)-PK11195 positron emission tomographic imaging in Alzheimer disease. Arch Neurol 66:60–67

    Article  PubMed  PubMed Central  Google Scholar 

  58. Jimenez S, Baglietto-Vargas D, Caballero C, Moreno-Gonzalez I, Torres M, Sanchez-Varo R, Ruano D, Vizuete M, Gutierrez A, Vitorica J (2008) Inflammatory response in the hippocampus of PS1M146L/APP751SL mouse model of Alzheimer’s disease: age-dependent switch in the microglial phenotype from alternative to classic. J Neurosci 28:11650–11661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Lee CG, Hartl D, Lee GR, Koller B, Matsuura H, Da Silva CA, Sohn MH, Cohn L, Homer RJ, Kozhich AA, Humbles A (2009) Role of breast regression protein 39 (BRP-39)/chitinase 3-like-1 in Th2 and IL-13–induced tissue responses and apoptosis. J Exp Med 206:1149–1166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Lee JK, Jin HK, Bae JS (2009) Bone marrow-derived mesenchymal stem cells reduce brain amyloid-β deposition and accelerate the activation of microglia in an acutely induced Alzheimer’s disease mouse model. Neurosci Lett 450:136–141

    Article  CAS  PubMed  Google Scholar 

  61. Lee HJ, Lee JK, Lee H, Carter JE, Chang JW, Oh W, Yang YS, Suh JG, Lee BH, Jin HK, Bae JS (2012) Human umbilical cord blood-derived mesenchymal stem cells improve neuropathology and cognitive impairment in an Alzheimer’s disease mouse model through modulation of neuroinflammation. Neurobiol Aging 33:588–602

    Article  CAS  PubMed  Google Scholar 

  62. Yun HM, Kim HS, Park KR, Shin JM, Kang AR, Il Lee K, Song S, Kim YB, Han SB, Chung HM, Hong JT (2013a) Placenta-derived mesenchymal stem cells improve memory dysfunction in an A β 1–42-infused mouse model of Alzheimer’s disease. Cell Death Dis 4:e958–e958

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Ma T, Gong K, Ao Q, Yan Y, Song B, Huang H, Zhang X, Gong Y (2013) Intracerebral transplantation of adipose-derived mesenchymal stem cells alternatively activates microglia and ameliorates neuropathological deficits in Alzheimer’s disease mice. Cell Transplant 22:113–126

    Article  Google Scholar 

  64. Kim JY, Kim DH, Kim JH, Lee D, Jeon HB, Kwon SJ, Kim SM, Yoo YJ, Lee EH, Choi SJ, Seo SW (2012) Soluble intracellular adhesion molecule-1 secreted by human umbilical cord blood-derived mesenchymal stem cell reduces amyloid-β plaques. Cell Death Differ 19:680–691

    Article  CAS  PubMed  Google Scholar 

  65. Kim JY, Kim DH, Kim DS, Kim JH, Jeong SY, Jeon HB, Lee EH, Yang YS, Oh W, Chang JW (2010) Galectin-3 secreted by human umbilical cord blood-derived mesenchymal stem cells reduces amyloid-β42 neurotoxicity in vitro. FEBS Lett 584:3601–3608

    Article  CAS  PubMed  Google Scholar 

  66. Lee HJ, Lee JK, Lee H, Shin JW, Carter JE, Sakamoto T, Jin HK, Bae JS (2010) The therapeutic potential of human umbilical cord blood-derived mesenchymal stem cells in Alzheimer’s disease. Neurosci Lett 481:30–35

    Article  CAS  PubMed  Google Scholar 

  67. Kim HJ, Seo SW, Chang JW, Lee JI, Kim CH, Chin J, Choi SJ, Kwon H, Yun HJ, Lee JM, Kim ST (2015) Stereotactic brain injection of human umbilical cord blood mesenchymal stem cells in patients with Alzheimer’s disease dementia: a phase 1 clinical trial. Alzheimer’s Dement 1:95–102

    Article  Google Scholar 

  68. Venkataramana NK, Kumar SK, Balaraju S, Radhakrishnan RC, Bansal A, Dixit A, Rao DK, Das M, Jan M, Gupta PK, Totey SM (2010) Open-labeled study of unilateral autologous bone-marrow-derived mesenchymal stem cell transplantation in Parkinson’s disease. Transl Res 155:62–70

    Article  CAS  PubMed  Google Scholar 

  69. Kang JM, Yeon BK, Cho SJ, Suh YH (2016) Stem cell therapy for Alzheimer’s disease: a review of recent clinical trials. J Alzheimer’s Dis 54:879–889

    Article  Google Scholar 

  70. Duncan T, Valenzuela M (2017) Alzheimer’s disease, dementia, and stem cell therapy. Stem Cell Res Ther 8:111

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Lalu MM, McIntyre L, Pugliese C, Fergusson D, Winston BW, Marshall JC, Granton J, Stewart DJ (2012) Safe ty of cell therapy with mesenchymal stromal cells (SafeCell): a systematic review and meta-analysis of clinical trials. PLoS ONE 7:47559

    Article  CAS  Google Scholar 

  72. Yun HM, Kim HS, Park KR, Shin JM, Kang AR, Il Lee K, Song S, Kim YB, Han SB, Chung HM, Hong JT (2013b) Placenta-derived mesenchymal stem cells improve memory dysfunction in an A β 1–42-infused mouse model of Alzheimer’s disease. Cell Death Dis 4:958–958

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the Vice Chancellor for Research and Technology, Kashan University of Medical Sciences, Kashan, Iran; and Shahid Beheshti University of Medical Sciences, Tehran, Iran.

Author information

Authors and Affiliations

Authors

Contributions

Dr. SB-M design and prepare the paper.

Corresponding author

Correspondence to Saeid Bagheri-Mohammadi.

Ethics declarations

Conflict of interest

There is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bagheri-Mohammadi, S. Microglia in Alzheimer's Disease: The Role of Stem Cell-Microglia Interaction in Brain Homeostasis. Neurochem Res 46, 141–148 (2021). https://doi.org/10.1007/s11064-020-03162-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-020-03162-4

Keywords

Navigation