Skip to main content
Log in

Unveiling the role of Fe3O4 in polymer spin valve near Verwey transition

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The spinterface formed between ferromagnetic (FM) electrode and organic materials is vital for performance optimization in organic spin valve (OSV). Half-metallic Fe3O4 with drastic change in structure, conductivity and magnetic property near Verwey transition can serve as an intrinsic spinterface regulator. However, such modulating effect of Fe3O4 in OSV has not been comprehensively investigated, especially below the Verwey transition temperature (Tv). Here, we highlight the important role of Fe3O4 electrode in reliable-working and controllable Fe3O4/P3HT/Co polymer spin valves by investigating the magnetoresistance (MR) above and below Tv. In order to distinguish between different contributions to charge transport and related MR responses, the systematic electronic and magnetic characterizations were carried out in full temperature range. Particularly, the first-order metal-insulator transition in Fe3O4 has a dramatic effect on the MR enhancement of polymer spin valves at Tv. Moreover, both the conducting mode transformation and MR line shape modulation could be accomplished across Tv. This research renders unique scenario to multimodal storage by external thermodynamic parameters, and further reveals the importance of spin-dependent interfacial modification in polymer spin valves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Guo, L. D.; Qin, Y.; Gu, X. R.; Zhu, X. W.; Zhou, Q.; Sun, X. N. Spin transport in organic molecules. Front. Chem. 2019, 7, 428.

    CAS  Google Scholar 

  2. Wang, Y.; Sun, L. J.; Wang, C.; Yang, F. X.; Ren, X. C.; Zhang, X. T.; Dong, H. L.; Hu, W. P. Organic crystalline materials in flexible electronics. Chem. Soc. Rev. 2019, 48, 1492–1530.

    CAS  Google Scholar 

  3. Jiang, H.; Hu, W. P. The emergence of organic single-crystal electronics. Angew. Chem., Int. Ed. 2020, 59, 1408–1428.

    CAS  Google Scholar 

  4. Kumar, B.; Kaushik, B. K.; Negi, Y. S. Organic thin film transistors: Structures, models, materials, fabrication, and applications: A review. Polym. Rev. 2014, 54, 33–111.

    CAS  Google Scholar 

  5. Wei, P.; Li, S. T.; Li, D. F.; Yu, H.; Wang, X. D.; Xu, C. C.; Yang, Y. D.; Bu, L. J.; Lu, G. H. Organic-semiconductor: Polymer-electret blends for high-performance transistors. Nano Res. 2018, 11, 5835–5848.

    CAS  Google Scholar 

  6. Zhang, Y. H.; Luo, Z. Z.; Hu, F. R.; Nan, H. Y.; Wang, X. Y.; Ni, Z. H.; Xu, J. B.; Shi, Y.; Wang, X. R. Realization of vertical and lateral van der Waals heterojunctions using two-dimensional layered organic semiconductors. Nano Res. 2017, 10, 1336–1344.

    CAS  Google Scholar 

  7. Zheng, L.; Li, J. F.; Zhou, K.; Yu, X. X.; Zhang, X. T.; Dong, H. L.; Hu, W. P. Molecular-scale integrated multi-functions for organic light-emitting transistors. Nano Res. 2020, 13, 1976–1981.

    CAS  Google Scholar 

  8. Wang, J. W.; Deng, W.; Wang, W.; Jia, R. F.; Xu, X. Z.; Xiao, Y. L.; Zhang, X. J.; Jie, J. S.; Zhang, X. H. External-force-driven solution epitaxy of large-area 2D organic single crystals for high-performance field-effect transistors. Nano Res. 2019, 12, 2796–2801.

    CAS  Google Scholar 

  9. Tsurumi, J.; Matsui, H.; Kubo, T.; Häusermann, R.; Mitsui, C.; Okamoto, T.; Watanabe, S.; Takeya, J. Coexistence of ultra-long spin relaxation time and coherent charge transport in organic single-crystal semiconductors. Nat. Phys. 2017, 13, 994–998.

    CAS  Google Scholar 

  10. Nguyen, T. D.; Hukic-Markosian, G.; Wang, F. J.; Wojcik, L.; Li, X. G.; Ehrenfreund, E.; Vardeny, Z. V. Isotope effect in spin response of π-conjugated polymer films and devices. Nat. Mater. 2010, 9, 345–352.

    CAS  Google Scholar 

  11. Xiong, Z. H.; Wu, D.; Vardeny, Z. V.; Shi, J. Giant magnetoresistance in organic spin-valves. Nature 2004, 427, 821–824.

    CAS  Google Scholar 

  12. Devkota, J.; Geng, R. G.; Subedi, R. C.; Nguyen, T. D. Organic spin valves: A review. Adv. Funct. Mater. 2016, 26, 3881–3898.

    CAS  Google Scholar 

  13. Guo, L. D.; Gu, X. R.; Zhu, X. W.; Sun, X. N. Recent advances in molecular spintronics: Multifunctional spintronic devices. Adv. Mater. 2019, 31, 1805355.

    CAS  Google Scholar 

  14. Sun, X. N.; Bedoya-Pinto, A.; Mao, Z. P.; Gobbi, M.; Yan, W. J.; Guo, Y. L.; Atxabal, A.; Llopis, R.; Yu, G.; Liu, Y. Q. et al. Active morphology control for concomitant long distance spin transport and photoresponse in a single organic device. Adv. Mater. 2016, 28, 2609–2615.

    CAS  Google Scholar 

  15. Sun, X. N.; Vélez, S.; Atxabal, A.; Bedoya-Pinto, A.; Parui, S.; Zhu, X. W.; Llopis, R.; Casanova, F.; Hueso, L. E. A molecular spin-photovoltaic device. Science 2017, 357, 677–680.

    CAS  Google Scholar 

  16. Sun, D. L.; Fang, M.; Xu, X. S.; Jiang, L.; Guo, H. W.; Wang, Y. M.; Yang, W. T.; Yin, L. F.; Snijders, P. C.; Ward, T. Z. et al. Active control of magnetoresistance of organic spin valves using ferroelectricity. Nat. Commun. 2014, 5, 4396.

    CAS  Google Scholar 

  17. Prezioso, M.; Riminucci, A.; Bergenti, I.; Graziosi, P.; Brunel, D.; Dediu, V. A. Electrically programmable magnetoresistance in multifunctional organic-based spin valve devices. Adv. Mater. 2011, 23, 1371–1375.

    CAS  Google Scholar 

  18. Nguyen, T. D.; Ehrenfreund, E.; Vardeny, Z. V. Spin-polarized light-emitting diode based on an organic bipolar spin valve. Science 2012, 337, 204–209.

    CAS  Google Scholar 

  19. Prieto-Ruiz, J. P.; Miralles, S. G.; Prima-García, H.; López-Muñoz, A.; Riminucci, A.; Graziosi, P.; Aeschlimann, M.; Cinchetti, M.; Dediu, V. A.; Coronado, E. Enhancing light emission in interface engineered spin-OLEDs through spin-polarized injection at high voltages. Adv. Mater. 2019, 31, 1806817.

    Google Scholar 

  20. Ngassam, F.; Urbain, E.; Joly, L.; Boukari, S.; Arabski, J.; Bertran, F.; Le Fèvre, P.; Garreau, G.; Wetzel, P.; Alouani, M. et al. Fluorinated phthalocyanine molecules on ferromagnetic cobalt: A highly polarized spinterface. J. Phys. Chem. C 2019, 123, 26475–26480.

    CAS  Google Scholar 

  21. Sun, M. F.; Wang, X. C.; Mi, W. B. Large magnetoresistance in Fe3O4/4, 4′-bipyridine/Fe3O4 organic magnetic tunnel junctions. J. Phys. Chem. C 2018, 122, 3115–3122.

    CAS  Google Scholar 

  22. Galbiati, M.; Tatay, S.; Barraud, C.; Dediu, A. V.; Petroff, F.; Mattana, R.; Seneor, P. Spinterface: Crafting spintronics at the molecular scale. MRS Bull. 2014, 39, 602–607.

    CAS  Google Scholar 

  23. Cinchetti, M.; Dediu, V. A.; Hueso, L. E. Activating the molecular spinterface. Nat. Mater. 2017, 16, 507–515.

    CAS  Google Scholar 

  24. Liang, S. H.; Yang, H. X.; Yang, H. W.; Tao, B. S.; Djeffal, A.; Chshiev, M.; Huang, W. C.; Li, X. G.; Ferri, A.; Desfeux, R. et al. Ferroelectric control of organic/ferromagnetic spinterface. Adv. Mater. 2016, 28, 10204–10210.

    CAS  Google Scholar 

  25. Fernández-Pacheco, A.; Orna, J.; De Teresa, J. M.; Algarabel, P. A.; Morellon, L.; Pardo, J. A.; Ibarra, M. R.; Kampert, E.; Zeitler, U. High-field Hall effect and magnetoresistance in Fe3O4 epitaxial thin films up to 30 Tesla. Appl. Phys. Lett. 2009, 95, 262108.

    Google Scholar 

  26. Liu, X. H.; Chang, C. F.; Tjeng, L. H.; Komarek, A. C.; Wirth, S. Large magnetoresistance effects in Fe3O4. J. Phys. Condense. Matter 2019, 31, 225803.

    CAS  Google Scholar 

  27. Bohra, M.; Agarwal, N.; Singh, V. A short review on verwey transition in nanostructured Fe3O4 materials. J. Nanomater. 2019, 2019, 8457383.

    Google Scholar 

  28. Zhang, X. M.; Ma, Q. L.; Suzuki, K.; Sugihara, A.; Qin, G. W.; Miyazaki, T.; Mizukami, S. Magnetoresistance effect in rubrene-based spin valves at room temperature. ACS Appl. Mater. Interfaces 2015, 7, 4685–4692.

    CAS  Google Scholar 

  29. Zhang, X. M.; Mizukami, S.; Kubota, T.; Ma, Q. L.; Oogane, M.; Naganuma, H.; Ando, Y.; Miyazaki, T. Observation of a large spin-dependent transport length in organic spin valves at room temperature. Nat. Commun. 2013, 4, 1392.

    Google Scholar 

  30. Zhang, X. M.; Tong, J. W.; Zhu, H. E.; Wang, Z. C.; Zhou, L. Q.; Wang, S. G.; Miyashita, T.; Mitsuishi, M.; Qin, G. W. Room temperature magnetoresistance effects in ferroelectric poly(vinylidene fluoride) spin valves. J. Mater. Chem. C 2017, 5, 5055–5062.

    CAS  Google Scholar 

  31. Verwey, E. J. W. Electronic conduction of magnetite (Fe3O4) and its transition point at low temperatures. Nature 1939, 144, 327–328.

    CAS  Google Scholar 

  32. Dey, P.; Rawat, R.; Potdar, S. R.; Choudhary, R. J.; Banerjee, A. Temperature driven transition from giant to tunneling magnetoresistance in Fe3O4/Alq3/Co spin valve: Role of Verwey transition of Fe3O4. J. Appl. Phys. 2014, 115, 17C110.

    Google Scholar 

  33. Pan, J. L.; Guo, H. G.; Wang, M.; Yang, H.; Hu, H. W.; Liu, P.; Zhu, H. W. Shape anisotropic Fe3O4 nanotubes for efficient microwave absorption. Nano Res. 2020, 13, 621–629.

    CAS  Google Scholar 

  34. Ziese, M.; Blythe, H. J. Magnetoresistance of magnetite. J. Phys. Condens. Matter 2000, 12, 13–28.

    CAS  Google Scholar 

  35. Liu, X.; Mi, W. B.; Zhang, Q.; Zhang, X. X. Magnetoresistance of epitaxial and polycrystalline Fe3O4 films near Verwey transition. Appl. Phys. Lett. 2018, 113, 012401.

    Google Scholar 

  36. Liu, X.; Mi, W. B. Structure, magnetic and transport properties of Fe3O4 near verwey transition. Acta Phys. Sin. 2020, 69, 040505.

    Google Scholar 

  37. Ding, S. S.; Tian, Y.; Dong, H. L.; Zhu, D. B.; Hu, W. P. Anisotropic magnetoresistance in NiFe-based polymer spin valves. ACS Appl. Mater. Interfaces 2019, 11, 11654–11659.

    CAS  Google Scholar 

  38. Vinzelberg, H.; Schumann, J.; Elefant, D.; Gangineni, R. B.; Thomas, J.; Büchner, B. Low temperature tunneling magnetoresistance on (La, Sr)MnO3/Co junctions with organic spacer layers. J. Appl. Phys. 2008, 103, 093720.

    Google Scholar 

  39. Ding, S. S.; Tian, Y.; Li, Y.; Mi, W. B.; Dong, H. L.; Zhang, X. T.; Hu, W. P.; Zhu, D. B. Inverse magnetoresistance in polymer spin valves. ACS Appl. Mater. Interfaces 2017, 9, 15644–15651.

    CAS  Google Scholar 

  40. Ding, S. S.; Tian, Y.; Wang, H. L.; Zhou, Z.; Mi, W. B.; Ni, Z. J.; Zou, Y.; Dong, H. L.; Gao, H. J.; Zhu, D. B. et al. Reliable spin valves of conjugated polymer based on mechanically transferrable top electrodes. ACS Nano 2018, 12, 12657–12664.

    CAS  Google Scholar 

  41. Sena, S. P.; Lindley, R. A.; Blythe, H. J.; Sauer, C.; Al-Kafarji, M.; Gehring, G. A. Investigation of magnetite thin films produced by pulsed laser deposition. J. Magnet. Magnet. Mater. 1997, 176, 111–126.

    CAS  Google Scholar 

  42. Gong, G. Q.; Gupta, A.; Xiao, G.; Qian, W.; Dravid, V. P. Magnetoresistance and magnetic properties of epitaxial magnetite thin films. Phys. Rev. B 1997, 56, 5096–5099.

    CAS  Google Scholar 

  43. Prakash, R.; Choudhary, R. J.; Chandra, L. S. S.; Lakshmi, N.; Phase, D. M. Electrical and magnetic transport properties of Fe3O4 thin films on a GaAs(100) substrate. J. Phys. Condense. Matter 2007, 19, 486212.

    Google Scholar 

  44. Liu, X. H.; Liu, W.; Zhang, Z. D. Extremely low coercivity in Fe3O4 thin film grown on Mg2TiO4 (001). RSC Adv. 2017, 7, 43648–43654.

    CAS  Google Scholar 

  45. Bollero, A.; Ziese, M.; Höhne, R.; Semmelhack, H. C.; Köhler, U.; Setzer, A.; Esquinazi, P. Influence of thickness on microstructural and magnetic properties in Fe3O4 thin films produced by PLD. J. Magnet. Magnet. Mater. 2005, 285, 279–289.

    CAS  Google Scholar 

  46. Liu, X.; Mi, W. B.; Zhang, Q.; Zhang, X. X. Anisotropic magnetoresistance across Verwey transition in charge ordered Fe3O4 epitaxial films. Phys. Rev. B 2017, 96, 214434.

    Google Scholar 

  47. Wu, R.; Wei, J. Z.; Peng, X. L.; Fu, J. B.; Liu, S. Q.; Zhang, Y.; Xia, Y. H.; Wang, C. S.; Yang, Y. C.; Yang, J. B. The asymmetric magnetization reversal in exchange biased granular Co/CoO films. Appl. Phys. Lett. 2014, 104, 182403.

    Google Scholar 

  48. Li, Z. R.; Wang, X. C.; Dai, H. T.; Mi, W. B.; Bai, H. L. Spin dependent transport and magnetic properties in Fe4N/tris(8-hydroxyquinoline) aluminum/Co organic spin valves fabricated by facing-target sputtering. Thin Solid Films 2015, 588, 26–33.

    CAS  Google Scholar 

  49. Wang, W. D.; Yu, M. H.; Batzill, M.; He, J. B.; Diebold, U.; Tang, J. K. Enhanced tunneling magnetoresistance and high-spin polarization at room temperature in a polystyrene-coated Fe3O4 granular system. Phys. Rev. B 2006, 73, 134412.

    Google Scholar 

  50. Groesbeck, M.; Liu, H. L.; Kavand, M.; Lafalce, E.; Wang, J. Y.; Pan, X.; Tennahewa, T. H.; Popli, H.; Malissa, H.; Boehme, C. et al. Separation of spin and charge transport in pristine π-conjugated polymers. Phys. Rev. Lett. 2020, 124, 067702.

    CAS  Google Scholar 

  51. Yang, W. T.; Shi, Q.; Miao, T.; Li, Q.; Cai, P.; Liu, H.; Lin, H. X.; Bai, Y.; Zhu, Y. Y.; Yu, Y. et al. Achieving large and nonvolatile tunable magnetoresistance in organic spin valves using electronic phase separated manganites. Nat. Commun. 2019, 10, 3877.

    Google Scholar 

  52. Sze, S. M.; Ng, K. K. Physics of Semiconductor Devices: 3rd ed. New Jersey: John Wiley & Sons, Inc, 2007; pp 1–815.

    Google Scholar 

  53. Subedi, R. C.; Geng, R. G.; Luong, H. M.; Huang, W. C.; Li, X. G.; Hornak, L. A.; Nguyen, T. D. Large magnetoelectric effect in organic ferroelectric copolymer-based multiferroic tunnel junctions. Appl. Phys. Lett. 2017, 110, 053302.

    Google Scholar 

  54. Varo, P. L.; Tejada, J. A. J.; Villanueva, J. A. L.; Deen, M. J. Spacecharge and injection limited current in organic diodes: A unified model. Org. Electron. 2014, 15, 2526–2535.

    Google Scholar 

  55. Tong, J. W.; Ruan, L. X.; Yao, X. N.; Qin, G. W.; Zhang, X. M. Defect states dependence of spin transport in iron phthalocyanine spin valves. Phys. Rev. B 2019, 99, 054406.

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge financial support from the National Key R&D Program (Nos. 2016YFB0401100 and 2017YFA0204503), the National Natural Science Foundation of China (Nos. 91833306, 21875158, 51633006, 51703159, and 51733004). The authors acknowledge the Laboratory of Microfabrication, Institute of Physics, CAS, for their assistance in electrode fabrication.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yuan Tian, Wenbo Mi or Wenping Hu.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, S., Tian, Y., Liu, X. et al. Unveiling the role of Fe3O4 in polymer spin valve near Verwey transition. Nano Res. 14, 304–310 (2021). https://doi.org/10.1007/s12274-020-3089-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-3089-x

Keywords

Navigation