Skip to main content
Log in

Effect and mechanism of encapsulation on aging characteristics of quantum-dot light-emitting diodes

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The aging characteristics, e.g., the evolution of efficiency and luminance of quantum-dot light-emitting diodes (QLEDs) are greatly affected by the encapsulation. When encapsulated with ultraviolet curable resin, the efficiency is increased over time, a known phenomenon termed as positive aging which remains one of the unsolved mysteries. By developing a physical model and an analytical model, we identify that the efficiency improvement is mainly attributed to the suppression of hole leakage current that is resulted from the passivation of ZnMgO defects. When further encapsulated with desiccant, the positive aging effect vanishes. To fully take the advantage of positive aging, the desiccant is incorporated after the positive aging process is completed. With the new encapsulation method, the QLED exhibits a high external quantum efficiency of 20.19% and a half lifetime of 1,267 h at an initial luminance of 2,800 cd·m−2, which are improved by 1.4 and 6.0 folds, respectively, making it one of the best performing devices. Our work provides an in-depth and systematic understanding of the mechanism of positive aging and offers a practical encapsulation way for realizing efficient and stable QLEDs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Colvin, V. L.; Schlamp, M. C.; Alivisatos, A. P. Light-emitting diodes made from cadmium selenide nanocrystals and a semiconducting polymer. Nature 1994, 370, 354–357.

    Article  CAS  Google Scholar 

  2. Qian, L.; Zheng, Y.; Xue, J. G.; Holloway, P. H. Stable and efficient quantum-dot light-emitting diodes based on solution-processed multilayer structures. Nat. Photonics 2011, 5, 543–548.

    Article  CAS  Google Scholar 

  3. Mashford, B. S.; Stevenson, M.; Popovic, Z.; Hamilton, C.; Zhou, Z. Q.; Breen, C.; Steckel, J.; Bulovic, V.; Bawendi, M.; Coe-Sullivan, S. et al. High-efficiency quantum-dot light-emitting devices with enhanced charge injection. Nat. Photonics 2013, 7, 407–412.

    Article  CAS  Google Scholar 

  4. Dai, X. L.; Zhang, Z. X.; Jin, Y. Z.; Niu, Y.; Cao, H. J.; Liang, X. Y.; Chen, L. W.; Wang, J. P.; Peng, X. G. Solution-processed, high-performance light-emitting diodes based on quantum dots. Nature 2014, 515, 96–99.

    Article  CAS  Google Scholar 

  5. Shen, H. B.; Gao, Q.; Zhang, Y. B.; Lin, Y.; Lin, Q. L.; Li, Z. H.; Chen, L.; Zeng, Z. P.; Li, X. G.; Jia, Y. et al. Visible quantum dot light-emitting diodes with simultaneous high brightness and efficiency. Nat. Photonics 2019, 13, 192–197.

    Article  CAS  Google Scholar 

  6. Pu, C. D.; Dai, X. L.; Shu, Y. F.; Zhu, M. Y.; Deng, Y. Z.; Jin, Y. Z.; Peng, X. G. Electrochemically-stable ligands bridge the photoluminescence-electroluminescence gap of quantum dots. Nat. Commun. 2020, 11, 937.

    Article  CAS  Google Scholar 

  7. Yang, Y.; Zheng, Y.; Cao, W.; Titov, A.; Hyvonen, J.; Manders, J. R.; Xue, J.; Holloway, P. H.; Qian, L. High-efficiency light-emitting devices based on quantum dots with tailored nanostructures. Nat. Photonics 2015, 9, 259–266.

    Article  CAS  Google Scholar 

  8. Dai, X. L.; Deng, Y. Z.; Peng, X. G.; Jin, Y. Z. Quantum-dot light-emitting diodes for large-area displays: Towards the dawn of commercialization. Adv. Mater. 2017, 29, 1607022.

    Article  Google Scholar 

  9. Chen, H.; Yeh, T. -H; He, J.; Zhang, C. C.; Abbel, R.; Hamblin, M. R.; Huang, Y. Y.; Lanzafame, R. J.; Stadler, I.; Celli, J. et al. Flexible quantum dot light-emitting devices for targeted photomedical applications. J. Soc. Inf. Display 2018, 26, 296–303.

    Article  CAS  Google Scholar 

  10. Zhang, H.; Chen, S. M.; Sun, X. W. Efficient red/green/blue tandem quantum-dot light-emitting diodes with external quantum efficiency exceeding 21%. ACS Nano 2018, 12, 697–704.

    Article  CAS  Google Scholar 

  11. Lim, J.; Park, Y. S.; Wu, K. F.; Yun, H. J.; Klimov, V. I. Droop-free colloidal quantum dot light-emitting diodes. Nano Lett. 2018, 18, 6645–6653.

    Article  CAS  Google Scholar 

  12. Sun, Y. Z.; Su, Q.; Zhang, H.; Wang, F.; Zhang, S. D.; Chen, S. M. Investigation on thermally induced efficiency roll-off: Toward efficient and ultrabright quantum-dot light-emitting diodes. ACS Nano 2019, 13, 11433–11442.

    Article  CAS  Google Scholar 

  13. Cao, W. R.; Xiang, C. Y.; Yang, Y. X.; Chen, Q.; Chen, L. W.; Yan, X. L.; Qian, L. Highly stable QLEDs with improved hole injection via quantum dot structure tailoring. Nat. Commun. 2018, 9, 2608.

    Article  Google Scholar 

  14. Chen, S.; Cao, W. R.; Liu, T. L.; Tsang, S. W.; Yang, Y. X.; Yan, X. L.; Qian, L. On the degradation mechanisms of quantum-dot light-emitting diodes. Nat. Commun. 2019, 10, 765.

    Article  CAS  Google Scholar 

  15. Xiang, C. Y.; Wu, L. J.; Lu, Z. Z.; Li, M. L.; Wen, Y. W.; Yang, Y. X.; Liu, W. Y.; Zhang, T.; Cao, W. R.; Tsang, S. W. et al. High efficiency and stability of ink-jet printed quantum dot light emitting diodes. Nat. Commun. 2020, 11, 1646.

    Article  Google Scholar 

  16. Moon, H.; Lee, C.; Lee, W.; Kim, J.; Chae, H. Stability of quantum dots, quantum dot films, and quantum dot light-emitting diodes for display applications. Adv. Mater. 2019, 31, 1804294.

    Article  Google Scholar 

  17. Acharya, K. P.; Titov, A.; Hyvonen, J.; Wang, C. G.; Tokarz, J.; Holloway, P. H. High efficiency quantum dot light emitting diodes from positive aging. Nanoscale 2017, 9, 14451–14457.

    Article  CAS  Google Scholar 

  18. Su, Q.; Sun, Y. Z.; Zhang, H.; Chen, S. M. Origin of positive aging in quantum-dot light-emitting diodes. Adv. Sci. 2018, 5, 1800549.

    Article  Google Scholar 

  19. Lewis, J. S.; Weaver, M. S. Thin-film permeation-barrier technology for flexible organic light-emitting devices. IEEE J. Sel. Top. Quant. Electron. 2004, 10, 45–57.

    Article  CAS  Google Scholar 

  20. Lee, C. Y.; Mude, N. N.; Lampande, R.; Eun, K. J.; Yeom, J. E.; Choi, H. S.; Sohn, S. H.; Yoo, J. M.; Kwon, J. H. Efficient cadmium-free inverted red quantum dot light-emitting diodes. ACS Appl. Mater. Interfaces 2019, 11, 36917–36924.

    Article  CAS  Google Scholar 

  21. Ding, W. C.; Chen, C. H.; Huang, L. J.; Kuo, M. C.; Kuo, Y. P.; Chen, P. Y.; Lu, H. H.; Lin, Y. H.; Tierce, N.; Bardeen, C. J. et al. P-108: Positive aging mechanisms for high-efficiency blue quantum dot light-emitting diodes. SID Symp. Dig. Tech. Pap. 2018, 49, 1622–1624.

    Article  CAS  Google Scholar 

  22. Lee, K.; Yun, J.; Lee, S.; Song, J.; Kim, Y.; Kwak, J.; Kim, G. T. Understanding of the aging pattern in quantum dot light-emitting diodes using low-frequency noise. Nanoscale 2020, 12, 15888–15895.

    Article  CAS  Google Scholar 

  23. Sun, Y. Z.; Jiang, Y. B.; Peng, H. R.; Wei, J. L.; Zhang, S. D.; Chen, S. M. Efficient quantum dot light-emitting diodes with a Zn0.85Mg0.15O interfacial modification layer. Nanoscale 2017, 9, 8962–8969.

    Article  CAS  Google Scholar 

  24. Cheng, T.; Wang, F. Z.; Sun, W. D.; Wang, Z. B.; Zhang, J.; You, B. G.; Li, Y.; Hayat, T.; Alsaed, A.; Tan, Z. High-performance blue quantum dot light-emitting diodes with balanced charge injection. Adv. Electron. Mater. 2019, 5, 1800794.

    Article  Google Scholar 

  25. Zhou, H.; Alves, H.; Hofmann, D. M.; Kriegseis, W.; Meyer, B. K.; Kaczmarczyk, G.; Hoffmann, A. Behind the weak excitonic emission of ZnO quantum dots: ZnO/Zn(OH)2 core-shell structure. Appl. Phys. Lett. 2002, 80, 210–212.

    Article  CAS  Google Scholar 

  26. Trunk, M.; Venkatachalapathy, V.; Galeckas, A.; Kuznetsov, A. Y. Deep level related photoluminescence in ZnMgO. Appl. Phys. Lett. 2010, 97, 211901.

    Article  Google Scholar 

  27. Tang, P. Y.; Xie, L. M.; Xiong, X. Y.; Wei, C. T.; Zhao, W. C.; Chen, M.; Zhuang, J. Y.; Su, W. M.; Cui, Z. Realizing 22.3% EQE and 7-fold lifetime enhancement in QLEDs via blending polymer TFB and cross-linkable small molecules for a solvent-resistant hole transport layer. ACS Appl. Mater. Interfaces 2020, 12, 13087–13095.

    Article  Google Scholar 

  28. Lee, S.; Han, C. Y.; Hong, A.; Kim, J.; Yang, H.; Jung, B. J.; Kwak, J. Inverted quantum dot light-emitting diodes with defect-passivated ZnO as an electron transport layer. Semicond. Sci. Technol. 2019, 34, 085002.

    Article  CAS  Google Scholar 

  29. Lee, C.; Moon, H.; Kim, J.; Kim, H.; Chae, H. Ethanedithiol treatment on zinc oxide films for highly efficient quantum dot light-emitting diodes by reducing exciton quenching. J. Opt. Soc. Am. B 2020, 37, 304–310.

    Article  CAS  Google Scholar 

  30. Kim, D.; Yoon, S.; Jeong, Y.; Kim, Y.; Kim, B.; Hong, M. Role of adsorbed H2O on transfer characteristics of solution-processed zinc tin oxide thin-film transistors. Appl. Phys. Express 2012, 5, 021101.

    Article  Google Scholar 

  31. Jeong, J. K.; Yang, H. W.; Jeong, J. H.; Mo, Y. G.; Kim, H. D. Origin of threshold voltage instability in indium-gallium-zinc oxide thin film transistors. Appl. Phys. Lett. 2008, 93, 123508.

    Article  Google Scholar 

  32. Li, Y. B.; Valle, F. D.; Simonnet, M.; Yamada, I.; Delaunay, J. J. Competitive surface effects of oxygen and water on UV photoresponse of ZnO nanowires. Appl. Phys. Lett. 2009, 94, 023110.

    Article  Google Scholar 

  33. Park, J. S.; Jeong, J. K.; Chung, H. J.; Mo, Y. G.; Kim, H. D. Electronic transport properties of amorphous indium-gallium-zinc oxide semiconductor upon exposure to water. Appl. Phys. Lett. 2008, 92, 072104.

    Article  Google Scholar 

  34. Deng, Y. Z.; Lin, X.; Fang, W.; Di, D. W.; Wang, L. J.; Friend, R. H.; Peng, X. G.; Jin, Y. Z. Deciphering exciton-generation processes in quantum-dot electroluminescence. Nat. Commun. 2020, 11, 2309.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 61775090), the Guangdong Natural Science Funds for Distinguished Young Scholars (No. 2016A030306017) and the Guangdong Special Funds for Science and Technology Development (No. 2017A050506001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuming Chen.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Z., Su, Q., Qin, Z. et al. Effect and mechanism of encapsulation on aging characteristics of quantum-dot light-emitting diodes. Nano Res. 14, 320–327 (2021). https://doi.org/10.1007/s12274-020-3091-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-3091-3

Keywords

Navigation