Skip to main content
Log in

Breakdown of Raman selection rules by Fröhlich interaction in few-layer WS2

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The polarization selection rule of Raman scattering is crucial in symmetry analysis of elementary excitations in semiconductors and correlated electron systems. Here we reported the observation of breakdown of Raman selection rules in few-layer WS2 by using resonant Raman spectroscopy. When the excitation energy is close to the dark A exciton state, we observed some infrared active modes and backscattering forbidden modes. Importantly, we found that all observed phonon modes follow the same paralleled-polarization behavior. According to the electron-phonon coupling near the band edge in WS2, we proposed a theoretical model based on the intraband Fröhlich interaction. In this case, the polarization response of the scattering signal is no longer determined by the original Raman tensor of scattered phonons. Instead, it is determined by a new isotropic Raman tensor that generated from this intraband Fröhlich interaction between dark A exciton and phonons. We found that this theoretical model is in excellent agreement with the observed results. The breakdown of Raman selection rules can violate the conventional limitations of the optical response and provide an effective method to control the polarization of Raman scattering signals in two-dimensional materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Loudon, R. The Raman effect in crystals. Adv. Phys. 1964, 13, 423–482.

    CAS  Google Scholar 

  2. Huang, K.; Rhys, A. Theory of light absorption and non-radiative transitions in F-centres. Proc. Roy. Soc. A Mathem., Phys. Eng. Sci. 1950, 204, 406–423.

    CAS  Google Scholar 

  3. Zhang, Q.; Zhang, J.; Utama, M. I. B.; Peng, B.; de la Mata, M.; Arbiol, J.; Xiong, Q. H. Exciton-phonon coupling in individual ZnTe nanorods studied by resonant Raman spectroscopy. Phys. Rev. B 2012, 85, 085418.

    Google Scholar 

  4. Henry, C. H.; Hopfield, J. J. Raman scattering by polaritons. Phys. Rev. Lett. 1965, 15, 964–966.

    CAS  Google Scholar 

  5. Sanvitto, D.; Kéna-Cohen, S. The road towards polaritonic devices. Nat. Mater. 2016, 15, 1061–1073.

    CAS  Google Scholar 

  6. Cooper, S. L.; Slakey, F.; Klein, M. V.; Rice, J. P.; Bukowski, E. D.; Ginsberg, D. M. Gap anisotropy and phonon self-energy effects in single-crystal YBa2Cu3O7-δ. Phys. Rev. B 1988, 38, 11934–11937.

    CAS  Google Scholar 

  7. Devereaux, T. P.; Häckl, R. Inelastic light scattering from correlated electrons. Rev. Mod. Phys. 2007, 79, 175–233.

    CAS  Google Scholar 

  8. Shen, X. Q.; Choi, H.; Chen, D. Y.; Zhao, W.; Armani, A. M. Raman laser from an optical resonator with a grafted single-molecule monolayer. Nat. Photonics 2019, 14, 95–101.

    Google Scholar 

  9. Ayars, E.; Hallen, H. Electric field gradient effects in NSOM-Raman spectroscopy. In Proceedings of American Physical Society, Annual March Meeting, Washington, 2001, pp. U96–U96.

  10. Ismail, N.; El-Meligi, A. A.; Temerk, Y. M.; Madian, M. Synthesis and characterization of layered FePS3 for hydrogen uptake. Int. J. Hyd. Energy 2010, 35, 7827–7834.

    CAS  Google Scholar 

  11. Kneipp, K.; Jorio, A.; Kneipp, H.; Brown, S. D. M.; Shafer, K.; Motz, J.; Saito, R.; Dresselhaus, G.; Dresselhaus, M. S. Polarization effects in surface-enhanced resonant Raman scattering of single-wall carbon nanotubes on colloidal silver clusters. Phys. Rev. B 2001, 63, 081401.

    Google Scholar 

  12. Takase, M.; Ajiki, H.; Mizumoto, Y.; Komeda, K.; Nara, M.; Nabika, H.; Yasuda, S.; Ishihara, H.; Murakoshi, K. Selection-rule breakdown in plasmon-induced electronic excitation of an isolated single-walled carbon nanotube. Nat. Photonics 2013, 7, 550–554.

    CAS  Google Scholar 

  13. Yu, P. Y.; Shen, Y. R.; Petroff, Y.; Falicov, L. M. Resonance Raman scattering at the forbidden yellow exciton in Cu2O. Phys. Rev. Lett. 1973, 30, 283–286.

    CAS  Google Scholar 

  14. Cardona, M. Light Scattering in Solids I: Introductory Concepts; Springer: Berlin, Heidelberg, 1983.

    Google Scholar 

  15. Liu, X. L.; Hersam, M. C. 2D materials for quantum information science. Nat. Rev. Mater. 2019, 4, 669–684.

    Google Scholar 

  16. Liu, Y.; Weiss, N. O.; Duan, X. D.; Cheng, H. C.; Huang, Y.; Duan, X. F. van der Waals heterostructures and devices. Nat. Rev. Mater. 2016, 1, 16042.

    CAS  Google Scholar 

  17. Zeng, H. L.; Cui, X. D. An optical spectroscopic study on two-dimensional group-VI transition metal dichalcogenides. Chem. Soc. Rev. 2015, 44, 2629–2642.

    CAS  Google Scholar 

  18. Wang, G.; Chernikov, A.; Glazov, M. M.; Heinz, T. F.; Marie, X.; Amand, T.; Urbaszek, B. Colloquium: Excitons in atomically thin transition metal dichalcogenides. Rev. Mod. Phys. 2018, 90, 021001.

    CAS  Google Scholar 

  19. Dery, H.; Song, Y. Polarization analysis of excitons in monolayer and bilayer transition-metal dichalcogenides. Phys. Rev. B 2015, 92, 125431.

    Google Scholar 

  20. Echeverry, J. P.; Urbaszek, B.; Amand, T.; Marie, X.; Gerber, I. C. Splitting between bright and dark excitons in transition metal dichalcogenide monolayers. Phys. Rev. B 2016, 93, 121107.

    Google Scholar 

  21. Scheuschner, N.; Gillen, R.; Staiger, M.; Maultzsch, J. Interlayer resonant Raman modes in few-layer MoS2. Phys. Rev. B 2015, 91, 235409.

    Google Scholar 

  22. del Corro, E.; Botello-Méndez, A.; Gillet, Y.; Elias, A. L.; Terrones, H.; Feng, S.; Fantini, C.; Rhodes, D.; Pradhan, N.; Balicas, L. et al. Atypical exciton-phonon interactions in WS2 and WSe2 monolayers revealed by resonance Raman spectroscopy. Nano Lett. 2016, 16, 2363–2368.

    CAS  Google Scholar 

  23. Song, Q. J.; Tan, Q. H.; Zhang, X.; Wu, J. B.; Sheng, B. W.; Wan, Y.; Wang, X. Q.; Dai, L.; Tan, P. H. Physical origin of Davydov splitting and resonant Raman spectroscopy of Davydov components in multilayer MoTe2. Phys. Rev. B 2016, 93, 115409.

    Google Scholar 

  24. Lin, M. L.; Zhou, Y.; Wu, J. B.; Cong, X.; Liu, X. L.; Zhang, J.; Li, H.; Yao, W.; Tan, P. H. Cross-dimensional electron-phonon coupling in van der Waals heterostructures. Nat. Commun. 2019, 10, 2419.

    Google Scholar 

  25. Tan, Q. H.; Sun, Y. J.; Liu, X. L.; Zhao, Y. Y.; Xiong, Q. H.; Tan, P. H.; Zhang, J. Observation of forbidden phonons, Fano resonance and dark excitons by resonance Raman scattering in few-layer WS2. 2D Mater. 2017, 4, 031007.

    Google Scholar 

  26. Miller, B.; Lindlau, J.; Bommert, M.; Neumann, A.; Yamaguchi, H.; Holleitner, A.; Högele, A.; Wurstbauer, U. Tuning the Fröhlich exciton-phonon scattering in monolayer MoS2. Nat. Commun. 2019, 10, 807.

    Google Scholar 

  27. Liang, L. B.; Zhang, J.; Sumpter, B. G.; Tan, Q. H.; Tan, P. H.; Meunier, V. Low-frequency shear and layer-breathing modes in Raman scattering of two-dimensional materials. ACS Nano 2017, 11, 11777–11802.

    CAS  Google Scholar 

  28. Zhang, X.; Han, W. P.; Wu, J. B.; Milana, S.; Lu, Y.; Li, Q. Q.; Ferrari, A. C.; Tan, P. H. Raman spectroscopy of shear and layer breathing modes in multilayer MoS2. Phys. Rev. B 2013, 87, 115413.

    Google Scholar 

  29. Kim, J.; Lee, J. U.; Lee, J.; Park, H. J.; Lee, Z.; Lee, C.; Cheong, H. Anomalous polarization dependence of Raman scattering and crystallographic orientation of black phosphorus. Nanoscale 2015, 7, 18708–18715.

    CAS  Google Scholar 

  30. Ling, X.; Huang, S. X.; Hasdeo, E. H.; Liang, L. B.; Parkin, W. M.; Tatsumi, Y.; Nugraha, A. R. T.; Puretzky, A. A.; Masih Das, P.; Sumpter, B. G. et al. Anisotropic electron-photon and electronphonon interactions in black phosphorus. Nano Lett. 2016, 16, 2260–2267.

    CAS  Google Scholar 

  31. Qiao, X. F.; Wu, J. B.; Zhou, L. W.; Qiao, J. S.; Shi, W.; Chen, T.; Zhang, X.; Zhang, J.; Ji, W.; Tan, P. H. Polytypism and unexpected strong interlayer coupling in two-dimensional layered ReS2. Nanoscale 2016, 8, 8324–8332.

    CAS  Google Scholar 

  32. Chen, X. T.; Lu, X.; Dubey, S.; Yao, Q.; Liu, S.; Wang, X. Z.; Xiong, Q. H.; Zhang, L. F.; Srivastava, A. Entanglement of single-photons and chiral phonons in atomically thin WSe2. Nat. Phys. 2019, 15, 221–227.

    CAS  Google Scholar 

  33. Martin, R. M. Theory of the one-phonon resonance Raman effect. Phys. Rev. B 1971, 4, 3676–3685.

    Google Scholar 

  34. Mak, K. F.; Lee, C.; Hone, J.; Shan, J.; Heinz, T. F. Atomically thin MoS2: A new direct-gap semiconductor. Phys. Rev. Lett. 2010, 105, 136805.

    Google Scholar 

  35. Qiu, D. Y.; Da Jornada, F. H.; Louie, S. G. Optical spectrum of MoS2: Many-body effects and diversity of exciton states. Phys. Rev. Lett. 2015, 115, 216805.

    Google Scholar 

  36. Chernikov, A.; van der Zande, A. M.; Hill, H. M.; Rigosi, A. F.; Velauthapillai, A.; Hone, J.; Heinz, T. F. L. Electrical tuning of exciton binding energies in monolayer WS2. Phys. Rev. Lett. 2015, 115, 126802.

    Google Scholar 

  37. Carvalho, B. R.; Malard, L. M.; Alves, J. M.; Fantini, C.; Pimenta, M. A. Symmetry-dependent exciton-phonon coupling in 2D and bulk MoS2 observed by resonance Raman scattering. Phys. Rev. Lett. 2015, 114, 136403.

    Google Scholar 

  38. Molas, M. R.; Faugeras, C.; Slobodeniuk, A. O.; Nogajewski, K.; Bartos, M.; Basko, D. M.; Potemski, M. Brightening of dark excitons in monolayers of semiconducting transition metal dichalcogenides. 2D Mater. 2017, 4, 021003.

    Google Scholar 

  39. Zhou, Y.; Scuri, G.; Wild, D. S.; High, A. A.; Dibos, A.; Jauregui, L. A.; Shu, C.; De Greve, K.; Pistunova, K.; Joe, A. Y. et al. Probing dark excitons in atomically thin semiconductors via near-field coupling to surface plasmon polaritons. Nat. Nanotechnol. 2017, 12, 856–860.

    CAS  Google Scholar 

  40. Wang, G.; Robert, C.; Glazov, M. M.; Cadiz, F.; Courtade, E.; Amand, T.; Lagarde, D.; Taniguchi, T.; Watanabe, K.; Urbaszek, B. et al. In-plane propagation of light in transition metal dichalcogenide monolayers: Optical selection rules. Phys. Rev. Lett. 2017, 119, 047401.

    CAS  Google Scholar 

  41. Park, K. D.; Jiang, T.; Clark, G; Xu, X. D.; Raschke, M. B. Radiative control of dark excitons at room temperature by nano-optical antenna-tip purcell effect. Nat. Nanotechnol. 2017, 13, 59–64.

    Google Scholar 

  42. Shi, W.; Lin, M. L.; Tan, Q. H.; Qiao, X. F.; Zhang, J.; Tan, P. H. Raman and photoluminescence spectra of two-dimensional nano-crystallites of monolayer WS2 and WSe2. 2D Mater. 2016, 3, 025016.

    Google Scholar 

  43. Zhang, X. X.; Cao, T.; Lu, Z. G.; Lin, Y. C.; Zhang, F.; Wang, Y.; Li, Z. Q.; Hone, J. C.; Robinson, J. A.; Smirnov, D. et al. Magnetic brightening and control of dark excitons in monolayer WSe2. Nat. Nanotechnol. 2017, 12, pages883–888.

    CAS  Google Scholar 

  44. Jin, C. H.; Kim, J.; Wu, K. D.; Chen, B.; Barnard, E. S.; Suh, J.; Shi, Z. W.; Drapcho, S. G; Wu, J. Q.; Schuck, P. J. et al. On optical dipole moment and radiative recombination lifetime of excitons in WSe2. Adv. Funct. Mater. 2016, 27, 1601741.

    Google Scholar 

  45. Wang, Z. L.; Molina-Sánchez, A.; Altmann, P.; Sangalli, D.; De Fazio, D.; Soavi, G.; Sassi, U.; Bottegoni, F.; Ciccacci, F.; Finazzi, M. et al. Intravalley spin-flip relaxation dynamics in single-layer WS2. Nano Lett. 2018, 18, 6882–6891.

    CAS  Google Scholar 

  46. Robert, C.; Amand, T.; Cadiz, F.; Lagarde, D.; Courtade, E.; Manca, M.; Taniguchi, T.; Watanabe, K.; Urbaszek, B.; Marie, X. Fine structure and lifetime of dark excitons in transition metal dichalcogenide monolayers. Phys. Rev. B 2017, 96, 155423.

    Google Scholar 

  47. Martin, R. M.; Damen, T. C. Breakdown of selection rules in resonance Raman scattering. Phys. Rev. Lett. 1971, 26, 86–88.

    CAS  Google Scholar 

  48. Yu, P. Y.; Cardona, M. Fundamentals of Semiconductors: Physics and Materials Properties; 4th ed. Springer: New York, 2010.

    Google Scholar 

Download references

Acknowledgements

J. Z. and P. T. acknowledge support from the National Basic Research Program of China (Nos. 2017YFA0303401 and 2016YFA0301200), Beijing Natural Science Foundation (No. JQ18014), and the Strategic Priority Research Program of the Chinese Academy of Sciences (No. XDB28000000).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Zhang.

Additional information

Competing interests

The authors declare no competing financial interest.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tan, QH., Sun, YJ., Liu, XL. et al. Breakdown of Raman selection rules by Fröhlich interaction in few-layer WS2. Nano Res. 14, 239–244 (2021). https://doi.org/10.1007/s12274-020-3075-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-3075-3

Keywords

Navigation