Skip to main content
Log in

A novel approach towards molecular memory device in gate tunable structure of MoS2-graphene

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Molecular interaction in two-dimensional (2D) van der Waals (vdW) interfaces has drawn tremendous attention for extraordinary materials characteristics. So far sensing characteristics of molecular interaction has been exploited extensively to reach the detection limit to a few parts-per-billion (ppb) of molecules and far less attention is given to the evolution of persistent current state due to the molecular exposure. Our study focuses on molecular memory operation of MoS2-graphene heterostructure based field effect transistor. Metastable resistance state of the device due to the external perturbation of molecules is tuned to get a nearly relaxation free current state at much lower molecular concentration of 10 ppb to facilitate non-volatile memory features for molecular memory operation. An ultrafast switching operation in milli-second order is achieved at room temperature for the fastest recovery obtained so far in any molecular sensor. The process is co-controlled both by molecular as well as external charge density.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Tiwari, S.; Rana, F.; Hanafi, H.; Hartstein, A.; Crabbé, E. F.; Chan, K. A silicon nanocrystals based memory. Appl. Phys. Lett. 1996, 68, 1377–1379.

    CAS  Google Scholar 

  2. Potember R. S.; Poehler, T. O.; Cowan, D. O.; Bloch, A. N. Electrical switching and memory phenomena in semiconducting organic charge-transfer complexes. In The Physics and Chemistry of Low Dimensional Solids. Alcácer, L., Ed.; Springer: Dordrecht, 1980; pp. 419–428.

    Google Scholar 

  3. Li, C.; Fan, W.; Lei, B.; Zhang, D. H.; Han, S.; Tang, T.; Liu, X. L.; Liu, Z. Q.; Asano, S.; Meyyappan, M. et al. Multilevel memory based on molecular devices. Appl. Phys. Lett. 2004, 84, 1949–1951.

    CAS  Google Scholar 

  4. Duan, X. F.; Huang, Y.; Lieber, C. M. Nonvolatile memory and programmable logic from molecule-gated nanowires. Nano Lett. 2002, 2, 487–490.

    CAS  Google Scholar 

  5. Bertolazzi, S.; Krasnozhon, D.; Kis, A. Nonvolatile memory cells based on MoS2/graphene heterostructures. ACS Nano 2013, 7, 3246–3252.

    CAS  Google Scholar 

  6. Liu, C. S.; Yan, X.; Song, X. F.; Ding, S. J.; Zhang, D. W.; Zhou, P. A semi-floating gate memory based on van der Waals heterostructures for quasi-non-volatile applications. Nat. Nanotechnol. 2018, 13, 404–410.

    CAS  Google Scholar 

  7. Borghetti, J.; Derycke, V.; Lenfant, S.; Chenevier, P.; Filoramo, A.; Goffman, M.; Vuillaume, D.; Bourgoin, J. P. Optoelectronic switch and memory devices based on polymer-functionalized carbon nanotube transistors. Adv. Mater. 2006, 18, 2535–2540.

    CAS  Google Scholar 

  8. Star, A.; Lu, Y.; Bradley, K.; Grüner, G. Nanotube optoelectronic memory devices. Nano Lett. 2004, 4, 1587–1591.

    CAS  Google Scholar 

  9. Wang, Q. S.; Wen, Y.; Cai, K. M.; Cheng, R. Q.; Yin, L.; Zhang, Y.; Li, J.; Wang, Z. X.; Wang, F.; Wang, F. M. et al. A. Nonvolatile infrared memory in MoS2/PbS van der Waals heterostructures. Sci. Adv. 2018, 4, eaap7916.

  10. Roy, K.; Padmanabhan, M.; Goswami, S.; Sai, T. P.; Ramalingam, G.; Raghavan, S.; Ghosh, A. Graphene-MoS2 hybrid structures for multifunctional photoresponsive memory devices. Nat. Nanotechnol. 2013, 8, 826–830.

    CAS  Google Scholar 

  11. Liu, Z. M.; Yasseri, A. A.; Lindsey, J. S.; Bocian, D. F. Molecular memories that survive silicon device processing and real-world operation. Science 2003, 302, 1543–1545.

    CAS  Google Scholar 

  12. Mas-Torrent, M.; Rovira, C.; Veciana, J. Surface-confined electroactive molecules for multistate charge storage information. Adv. Mater. 2013, 25, 462–468.

    CAS  Google Scholar 

  13. Zhao, Y. D.; Bertolazzi, S.; Maglione, M. S.; Rovira, C.; Mas-Torrent, M.; Samorì, P. Molecular approach to electrochemically switchable monolayer MoS2 transistors. Adv. Mater. 2020, 32, 2000740.

    CAS  Google Scholar 

  14. Late, D. J.; Huang, Y. K.; Liu, B.; Acharya, J.; Shirodkar, S. N.; Luo, J. J.; Yan, A. M.; Charles, D.; Waghmare, U. V.; Dravid, V. P. et al. Sensing behavior of atomically thin-layered MoS2 transistors. ACS Nano 2013, 7, 4879–4891.

    CAS  Google Scholar 

  15. Liu, B. L.; Chen, L.; Liu, G.; Abbas, A. N.; Fathi, M.; Zhou, C. W. High-performance chemical sensing using Schottky-contacted chemical vapor deposition grown monolayer MoS2 transistors. ACS Nano 2014, 8, 5304–5314.

    CAS  Google Scholar 

  16. Li, H.; Yin, Z. Y.; He, Q. Y.; Li, H.; Huang, X.; Lu, G.; Fam, D. W. H.; Tok, A. I. Y.; Zhang, Q.; Zhang, H. Fabrication of single- and multilayer MoS2 film-based field-effect transistors for sensing NO at room temperature. Small 2012, 8, 63–67.

    CAS  Google Scholar 

  17. Cho, B.; Yoon, J.; Lim, S. K.; Kim, A. R.; Kim, D. H.; Park, S. G.; Kwon, J. D.; Lee, Y. J.; Lee, K. H.; Lee, B. H. et al. Chemical sensing of 2D graphene/MoS2 heterostructure device. ACS Appl. Mater. Interfaces 2015, 7, 16775–16780.

    CAS  Google Scholar 

  18. Kumar, R.; Goel, N.; Kumar, M. UV-activated MoS2 based fast and reversible NO2 sensor at room temperature. ACS Sens. 2017, 2, 1744–1752.

    CAS  Google Scholar 

  19. Long, H.; Harley-Trochimczyk, A.; Pham, T.; Tang, Z. R.; Shi, T. L.; Zettl, A.; Carraro, C.; Worsley, M. A.; Maboudian, R. High surface area MoS2/graphene hybrid aerogel for ultrasensitive NO2 detection. Adv. Funct. Mater. 2016, 26, 5158–5165.

    CAS  Google Scholar 

  20. Long, H.; Chan, L.; Harley-Trochimczyk, A.; Luna, L. E.; Tang, Z. R.; Shi, T. L.; Zettl, A.; Carraro, C.; Worsley, M. A.; Maboudian, R. 3D MoS2 aerogel for ultrasensitive NO2 detection and its tunable sensing behavior. Adv. Mater. Interfaces 2017, 4, 1700217.

    Google Scholar 

  21. Cho, S. Y.; Kim, S. J.; Lee, Y.; Kim, J. S.; Jung, W. B.; Yoo, H. W.; Kim, J.; Jung, H. T. Highly enhanced gas adsorption properties in vertically aligned MoS2 layers. ACS Nano 2015, 9, 9314–9321.

    CAS  Google Scholar 

  22. Cho, B.; Hahm, M. G.; Choi, M., Yoon, J.; Kim, A. R.; Lee, Y. J.; Park, S. G.; Kwon, J. D.; Kim, C. S.; Song, M. et al. Charge-transfer-based gas sensing using atomic-layer MoS2. Sci. Rep. 2015, 5, 8052.

    CAS  Google Scholar 

  23. Lv, R. T.; Chen, G. G.; Li, Q.; McCreary, A.; Botello-Méndez, A.; Morozov, S. V.; Liang, L. B.; Declerck, X.; Perea-López, N.; Cullen, D. A. et al. Ultrasensitive gas detection of large-area boron-doped graphene. Proc. Natl. Acad. Sci. USA 2015, 112, 14527–14532.

    CAS  Google Scholar 

  24. Lu, G. H.; Park, S.; Yu, K. H.; Ruoff, R. S.; Ocola, L. E.; Rosenmann, D.; Chen, J. H. Toward practical gas sensing with highly reduced graphene oxide: A new signal processing method to circumvent run-to-run and device-to-device variations. ACS Nano 2011, 5, 1154–1164.

    CAS  Google Scholar 

  25. Yang, G.; Lee, C.; Kim, J.; Ren, F.; Pearton, S. J. Flexible graphene-based chemical sensors on paper substrates. Phys. Chem. Chem. Phys. 2013, 15, 1798–1801.

    CAS  Google Scholar 

  26. Fowler, J. D.; Allen, M. J.; Tung, V. C.; Yang, Y.; Kaner, R. B.; Weiller, B. H. Practical chemical sensors from chemically derived graphene. ACS Nano 2009, 3, 301–306.

    CAS  Google Scholar 

  27. Yavari, F.; Castillo, E.; Gullapalli, H.; Ajayan, P. M.; Koratkar, N. High sensitivity detection of NO2 and NH3 in air using chemical vapor deposition grown graphene. Appl. Phys. Lett. 2012, 100, 203120.

    Google Scholar 

  28. Perkins, F. K.; Friedman, A. L.; Cobas, E.; Campbell, P. M.; Jernigan, G. G.; Jonker, B. T. Chemical vapor sensing with monolayer MoS2. Nano Lett. 2013, 13, 668–673.

    CAS  Google Scholar 

  29. Cho, B.; Kim, A. R.; Park, Y.; Yoon, J.; Lee, Y. J.; Lee, S.; Yoo, T. J.; Kang, C. G.; Lee, B. H.; Ko, H. C. et al. Bifunctional sensing characteristics of chemical vapor deposition synthesized atomic-layered MoS2. ACS Appl. Mater. Interfaces 2015, 7, 2952–2959.

    CAS  Google Scholar 

  30. Kim, J. S.; Yoo, H. W.; Choi, H. O.; Jung, H. T. Tunable volatile organic compounds sensor by using thiolated ligand conjugation on MoS2. Nano Lett. 2014, 14, 5941–5947.

    CAS  Google Scholar 

  31. Yue, Q.; Shao, Z. Z.; Chang, S. L.; Li, J. B. Adsorption of gas molecules on monolayer MoS2 and effect of applied electric field. Nanoscale Res. Lett. 2013, 8, 425.

    Google Scholar 

  32. Ao, Z. M.; Li, S.; Jiang, Q. Correlation of the applied electrical field and CO adsorption/desorption behavior on Al-doped graphene. Solid State Commun. 2010, 150, 680–683.

    CAS  Google Scholar 

  33. Zhu, X. F.; Wang, L.; Chen, L. F. Adsorption and dissociation of O2 on MoSe2 and MoTe2 monolayers: Ab initio study. Int. J. Mod. Phys. B 2014, 28, 1450195.

    CAS  Google Scholar 

  34. Sun, J.; Muruganathan, M.; Mizuta, H. Room temperature detection of individual molecular physisorption using suspended bilayer graphene. Sci. Adv. 2016, 2, e1501518.

    Google Scholar 

  35. Fuhrer, M. S.; Hone, J. Measurement of mobility in dual-gated MoS2 transistors. Nat. Nanotechnol. 2013, 8, 146–147.

    CAS  Google Scholar 

  36. Radisavljevic, B.; Kis, A. Mobility engineering and a metal-insulator transition in monolayer MoS2. Nat. Mater. 2013, 12, 815–820.

    CAS  Google Scholar 

  37. Lee, J.; Pak, S.; Lee, Y. W.; Cho, Y.; Hong, J.; Giraud, P.; Shin, H. S.; Morris, S. M.; Sohn, J. I.; Cha, S. N. et al. Monolayer optical memory cells based on artificial trap-mediated charge storage and release. Nat. Commun. 2017, 8, 14734.

    CAS  Google Scholar 

  38. Lei, S. D.; Wen, F. F.; Li, B.; Wang, Q. Z.; Huang, Y. H.; Gong, Y. J.; He, Y. M.; Dong, P.; Bellah, J.; George, A. et al. Optoelectronic memory using two-dimensional materials. Nano Lett. 2014, 15, 259–265.

    Google Scholar 

  39. Li, D.; Chen, M. Y.; Sun, Z. Z.; Yu, P.; Liu, Z.; Ajayan, P. M.; Zhang, Z. X. Two-dimensional non-volatile programmable p-n junctions. Nat. Nanotechnol. 2017, 12, 901–906.

    Google Scholar 

  40. Fan, Z. Y.; Lu, J. G. Gate-refreshable nanowire chemical sensors. Appl. Phys. Lett. 2005, 86, 123510.

    Google Scholar 

  41. Chang, Y. W.; Oh, J. S.; Yoo, S. H.; Choi, H. H.; Yoo, K. H. Electrically refreshable carbon-nanotube-based gas sensors. Nanotechnology 2007, 18, 435504.

    Google Scholar 

  42. Geistlinger, H. Electron theory of thin-film gas sensors. Sens. Actuators B: Chem. 1993, 17, 47–60.

    CAS  Google Scholar 

  43. Tabata, H.; Sato, Y.; Oi, K.; Kubo, O.; Katayama, M. Bias-and gate-tunable gas sensor response originating from modulation in the Schottky barrier height of a graphene/MoS2 van der Waals heterojunction. ACS Appl. Mater. Interfaces 2018, 10, 38387–38393.

    CAS  Google Scholar 

  44. Henrich, V. E.; Cox, P. A. The Surface Science of Metal Oxides; Cambridge University Press: New York, 1994.

    Google Scholar 

  45. Zhang, Y.; Kolmakov, A.; Chretien, S.; Metiu, H.; Moskovits, M. Control of catalytic reactions at the surface of a metal oxide nanowire by manipulating electron density inside it. Nano Lett. 2004, 4, 403–407.

    CAS  Google Scholar 

  46. Schedin, F.; Geim, A. K., Morozov S. V.; Hill, E. W.; Blake, P.; Katsnelson, M. I.; Novoselov, K. S. Detection of individual gas molecules adsorbed on graphene. Nat. Mater. 2007, 6, 652–655.

    CAS  Google Scholar 

  47. Ma, N.; Jena, D. Carrier statistics and quantum capacitance effects on mobility extraction in two-dimensional crystal semiconductor field-effect transistors. 2D Mater. 2015, 2, 015003.

    Google Scholar 

  48. Zhao, S. J.; Xue, J. M.; Kang, W. Gas adsorption on MoS2 monolayer from first-principles calculations. Chem. Phys. Lett. 2014, 595–596, 35–42.

    Google Scholar 

  49. Andringa, A. M.; Meijboom, J. R.; Smits, E. C.; Mathijssen, S. G.; Blom, P. W. M.; De Leeuw, D. M. Gate-bias controlled charge trapping as a mechanism for NO2 detection with field-effect transistors. Adv. Funct. Mater. 2011, 21, 100–107.

    CAS  Google Scholar 

  50. Andringa, A. M.; Christian Roelofs, W. S.; Sommer, M., Thelakkat, M.; Kemerink, M.; de Leeuw, D. M. Localizing trapped charge carriers in NO2 sensors based on organic field-effect transistors. Appl. Phys. Lett. 2012, 101, 153302.

    Google Scholar 

Download references

Acknowledgements

A. M. would like to acknowledge Department of Science and Technology (DST), India for the research grant (DST 1682).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abha Misra.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tripathi, R., Misra, A. A novel approach towards molecular memory device in gate tunable structure of MoS2-graphene. Nano Res. 14, 177–184 (2021). https://doi.org/10.1007/s12274-020-3063-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-3063-7

Keywords

Navigation