Skip to main content
Log in

Emerging porous nanosheets: From fundamental synthesis to promising applications

  • Perspective Review
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Metal-organic framework (MOF) nanosheets and covalent organic framework (COF) nanosheets as emerging porous materials nanosheets have captured increasing attention owing to their attractive properties originating from the advantages of large lateral size, ultrathin thickness, tailorable physiochemical environment, flexibility and highly accessible active sites on surface, and the applications of them have been explored in a wide range of fields. Although MOF and COF nanosheets own many similar properties, their applications in various fields show significant differences, probably due to their different compositions and bonding modes. Hence, we summarize the recent progress of MOF and COF nanosheets by comparative analysis on their advantages and limitations in synthesis and applications, providing a more profound and full-scale perspective for researchers or beginners to understand this field. Herein, the categories of preparation methods of MOF and COF nanosheets are firstly discussed, including top-down and bottom-up methods. Secondly, the applications of MOF and COF nanosheets for separation, catalysis, sensing and energy storage are summarized. Finally, based on current achievements, we put forward our personal insights into the challenges and outlooks on the synthesis, characterizations, and promising applications for future research of MOF and COF nanosheets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bonaccorso, F.; Colombo, L.; Yu, G. H.; Stoller, M.; Tozzini, V.; Ferrari, A. C.; Ruoff, R. S.; Pellegrini, V. Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage. Science 2015, 347, 1246501.

    Google Scholar 

  2. Tan, C. L.; Cao, X. H.; Wu, X. J.; He, Q. Y.; Yang, J.; Zhang, X.; Chen, J. Z.; Zhao, W.; Han, S. K.; Nam, G. H. et al. Recent advances in ultrathin two-dimensional nanomaterials. Chem. Rev. 2017, 117, 6225–6331.

    CAS  Google Scholar 

  3. Zhang, J. Y.; Chen, H. L.; Zhao, M.; Liu, G T.; Wu, J. 2D nanomaterials for tissue engineering application. Nano Res. 2020, 13, 2019–2034.

    CAS  Google Scholar 

  4. Fang, Z. W.; Xing, Q. Y.; Fernandez, D.; Zhang, X.; Yu, G H. A mini review on two-dimensional nanomaterial assembly. Nano Res. 2020, 13, 1179–1190.

    Google Scholar 

  5. Fiori, G.; Bonaccorso, F.; Iannaccone, G.; Palacios, T.; Neumaier, D.; Seabaugh, A.; Banerjee, S. K.; Colombo, L. Electronics based on two-dimensional materials. Nat. Nanotechnol. 2014, 9, 768–779.

    CAS  Google Scholar 

  6. Joensen, P.; Frindt, R. F.; Morrison, S. R. Single-layer MOS2. Mater. Res. Bull. 1986, 21, 457–461.

    CAS  Google Scholar 

  7. Treacy, M. M. J.; Rice, S. B.; Jacobson, A. J.; Lewandowski, J. T. Electron microscopy study of delamination in dispersions of the perovskite-related layered phases K[Ca2Nan-3NbnO3n-1]: Evidence for single-layer formation. Chem. Mater. 1990, 2, 279–286.

    CAS  Google Scholar 

  8. Tredgold, R. H. Spreading it out. Nature 1991, 354, 120.

    Google Scholar 

  9. Adachi-Pagano, M.; Forano, C.; Besse, J. P. Delamination of layered double hydroxides by use of surfactants. Chem. Commun. 2000, 91–92.

    Google Scholar 

  10. Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669.

    CAS  Google Scholar 

  11. Grill, L.; Dyer, M.; Lafferentz, L.; Persson, M.; Peters, M. V.; Hecht, S. Nano-architectures by covalent assembly of molecular building blocks. Nat. Nanotechnol. 2007, 2, 687–691.

    CAS  Google Scholar 

  12. Pacilé, D.; Meyer, J. C.; Girit, Ç. Ö.; Zettl, A. The two-dimensional phase of boron nitride: Few-atomic-layer sheets and suspended membranes. Appl. Phys. Lett. 2008, 92, 133107.

    Google Scholar 

  13. Nielsen, R. B.; Kongshaug, K. O.; Fjellvåg, H. Delamination, synthesis, crystal structure and thermal properties of the layered metal-organic compound Zn(C12H14O4). J. Mater. Chem. 2008, 18, 1002–1007.

    CAS  Google Scholar 

  14. Naguib, M.; Kurtoglu, M.; Presser, V.; Lu, J.; Niu, J. J.; Heon, M.; Hultman, L.; Gogotsi, Y.; Barsoum, M. W. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv. Mater. 2011, 23, 4248–4253.

    CAS  Google Scholar 

  15. Li, L. K.; Yu, Y. J.; Ye, G. J.; Ge, Q. Q.; Ou, X. D.; Wu, H.; Feng, D. L.; Chen, X. H.; Zhang, Y. B. Black phosphorus field-effect transistors. Nat. Nanotechnol. 2014, 9, 372–377.

    CAS  Google Scholar 

  16. Shim, J.; Park, H. Y.; Kang, D. H.; Kim, J. O.; Jo, S. H.; Park, Y.; Park, J. H. Electronic and optoelectronic devices based on two-dimensional materials: From fabrication to application. Adv. Electron. Mater. 2017, 3, 1600364.

    Google Scholar 

  17. Jeong, G H.; Sasikala, S. P.; Yun, T.; Lee, G Y.; Lee, W. J.; Kim, S. O. Nanoscale assembly of 2D materials for energy and environmental applications. Adv. Mater. 2020, 32, 1907006.

    CAS  Google Scholar 

  18. Akram, B.; Shi, W. X.; Zhang, H.; Ullah, S.; Khurram, M.; Wang, X. Free-standing CoO-POM Janus-like ultrathin nanosheets. Angew. Chem., Int. Ed. 2020, 59, 8497–8501.

    CAS  Google Scholar 

  19. Yang, H.; Bright, J.; Kasani, S.; Zheng, P.; Musho, T.; Chen, B. L.; Huang, L.; Wu, N. Q. Metal-organic framework coated titanium dioxide nanorod array p-n heterojunction photoanode for solar water-splitting. Nano Res. 2019, 12, 643–650.

    CAS  Google Scholar 

  20. Zhu, Y. F.; Qiu, X. Y.; Zhao, S. L.; Guo, J.; Zhang, X. F.; Zhao, W. S.; Shi, Y. N.; Tang, Z. Y. Structure regulated catalytic performance of gold nanocluster-MOF nanocomposites. Nano Res. 2020, 13, 1928–1932.

    CAS  Google Scholar 

  21. Li, J. R.; Kuppler, R. J.; Zhou, H. C. Selective gas adsorption and separation in metal-organic frameworks. Chem. Soc. Rev. 2009, 38, 1477–1504.

    CAS  Google Scholar 

  22. Kreno, L. E.; Leong, K.; Farha, O. K.; Allendorf, M.; van Duyne, R. P.; Hupp, J. T. Metal-organic framework materials as chemical sensors. Chem. Rev. 2012, 112, 1105–1125.

    CAS  Google Scholar 

  23. Lei, Z. W.; Shen, J. L.; Zhang, W. D.; Wang, Q. R.; Wang, J.; Deng, Y. H.; Wang, C. Y. Exploring porous zeolitic imidazolate frame work-8 (ZIF-8) as an efficient filler for high-performance poly(ethyleneoxide)-based solid polymer electrolytes. Nano Res. 2020, 13, 2259–2267.

    CAS  Google Scholar 

  24. Furukawa, H.; Yaghi, O. M. Storage of hydrogen, methane, and carbon dioxide in highly porous covalent organic frameworks for clean energy applications. J. Am. Chem. Soc. 2009, 131, 8875–8883.

    CAS  Google Scholar 

  25. Ding, S. Y.; Wang, W. Covalent organic frameworks (COFs): From design to applications. Chem. Soc. Rev. 2013, 42, 548–568.

    CAS  Google Scholar 

  26. Furukawa, H.; Cordova, K. E.; O’Keeffe, M.; Yaghi, O. M. The chemistry and applications of metal-organic frameworks. Science 2013, 341, 1230444.

    Google Scholar 

  27. Cote, A. P.; Benin, A. I.; Ockwig, N. W.; O’Keeffe, M.; Matzger, A. J.; Yaghi, O. M. Porous, crystalline, covalent organic frameworks. Science 2005, 310, 1166–1170.

    CAS  Google Scholar 

  28. Wang, J.; Li, N.; Xu, Y. X.; Pang, H. Two-dimensional MOF and COF nanosheets: Synthesis and applications in electrochemistry. Chem.—Eur. J. 2020, 26, 6402–6422.

    CAS  Google Scholar 

  29. Zhu, H. L.; Liu, D. X. The synthetic strategies of metal-organic framework membranes, films and 2D MOFs and their applications in devices. J. Mater. Chem. A 2019, 7, 21004–21035.

    CAS  Google Scholar 

  30. Haldar, S.; Roy, K.; Nandi, S.; Chakraborty, D.; Puthusseri, D.; Gawli, Y.; Ogale, S.; Vaidhyanathan, R. High and Reversible lithium ion storage in self-exfoliated triazole-triformyl phloroglucinol-based covalent organic nanosheets. Adv. Energy Mater. 2018, 8, 1702170.

    Google Scholar 

  31. Zhao, M. T.; Huang, Y.; Peng, Y. W.; Huang, Z. Q.; Ma, Q. L.; Zhang, H. Two-dimensional metal-organic framework nanosheets: Synthesis and applications. Chem. Soc. Rev. 2018, 47, 6267–6295.

    CAS  Google Scholar 

  32. Duan, J. G.; Li, Y. S.; Pan, Y. C.; Behera, N.; Jin, W. Q. Metal-organic framework nanosheets: An emerging family of multifunctional 2D materials. Coord. Chem. Rev. 2019, 395, 25–45.

    CAS  Google Scholar 

  33. Rodriguez-San-Miguel, D.; Montoro, C.; Zamora, F. Covalent organic framework nanosheets: Preparation, properties and applications. Chem. Soc. Rev. 2020, 49, 2291–2302.

    CAS  Google Scholar 

  34. Li, J.; Jing, X. C.; Li, Q. Q.; Li, S. W.; Gao, X.; Feng, X.; Wang, B. Bulk COFs and COF nanosheets for electrochemical energy storage and conversion. Chem. Soc. Rev. 2020, 49, 3565–3604.

    CAS  Google Scholar 

  35. Zhao, M. T.; Lu, Q. P.; Ma, Q. L.; Zhang, H. Two-dimensional metal-organic framework nanosheets. Small Methods 2017, 1, 1600030.

    Google Scholar 

  36. Nicolosi, V.; Chhowalla, M.; Kanatzidis, M. G.; Strano, M. S.; Coleman, J. N. Liquid exfoliation of layered materials. Science 2013, 340, 1226419.

    Google Scholar 

  37. Mukhopadhyay, A.; Maka, V. K.; Savitha, G.; Moorthy, J. N. Photochromic 2D metal-organic framework nanosheets (MONs): Design, synthesis, and functional MON-ormosil composite. Chem 2018, 4, 1059–1079.

    CAS  Google Scholar 

  38. Amo-Ochoa, P.; Welte, L.; González-Prieto, R.; Sanz Miguel, P. J.; Gómez-Garcia, C. J.; Mateo-Martí, E.; Delgado, S.; Gómez-Herrero, J.; Zamora, F. Single layers of a multifunctional laminar Cu(I, II) coordination polymer. Chem. Commun. 2010, 46, 3262–3264.

    CAS  Google Scholar 

  39. Zhang, C. L.; Zhang, S. M.; Yan, Y. H.; Xia, F.; Huang, A. N.; Xian, Y. Y. Highly fluorescent polyimide covalent organic nanosheets as sensing probes for the detection of 2,4,6-trinitrophenol. ACS Appl. Mater. Interfaces 2017, 9, 13415–13421.

    CAS  Google Scholar 

  40. Abhervé, A.; Manas-Valero, S.; Clemente-León, M.; Coronado, E. Graphene related magnetic materials: Micromechanical exfoliation of 2D layered magnets based on bimetallic anilate complexes with inserted [FeIII(acac2-trien)]+ and [FeIII(sal2-trien)]+ molecules. Chem. Sci. 2015, 6, 4665–4673.

    Google Scholar 

  41. Wang, S.; Wang, Q. Y.; Shao, P. P.; Han, Y. Z.; Gao, X.; Ma, L.; Yuan, S.; Ma, X. J.; Zhou, J. W.; Feng, X. et al. Exfoliation of covalent organic frameworks into few-layer redox-active nanosheets as cathode materials for lithium-ion batteries. J. Am. Chem. Soc. 2017, 139, 4258–4261.

    CAS  Google Scholar 

  42. Ding, Y. J.; Chen, Y. P.; Zhang, X. L.; Chen, L.; Dong, Z. H.; Jiang, H. L.; Xu, H. X.; Zhou, H. C. Controlled intercalation and chemical exfoliation of layered metal-organic frameworks using a chemically labile intercalating agent. J. Am. Chem. Soc. 2017, 139, 9136–9139.

    CAS  Google Scholar 

  43. Khayum, M. A.; Kandambeth, S.; Mitra, S.; Nair, S. B.; Das, A.; Nagane, S. S.; Mukherjee, R.; Banerjee, R. Chemically delaminated free-standing ultrathin covalent organic nanosheets. Angew. Chem., Int. Ed. 2016, 55, 15604–15608.

    CAS  Google Scholar 

  44. Yeon, Y.; Lee, M. Y.; Kim, S. Y.; Lee, J.; Kim, B.; Park, B.; In, I. Production of quasi-2D graphene nanosheets through the solvent exfoliation of pitch-based carbon fiber. Nanotechnology 2015, 26, 375602.

    Google Scholar 

  45. Quah, H. S.; Ng, L. T.; Donnadieu, B.; Tan, G. K.; Vittal, J. J. Molecular scissoring: Facile 3D to 2D conversion of lanthanide metal organic frameworks via solvent exfoliation. Inorg. Chem. 2016, 55, 10851–10854.

    CAS  Google Scholar 

  46. Wang, K.; Zhang, Z.; Lin, L.; Chen, J.; Hao, K.; Tian, H. Y.; Chen, X. S. Covalent organic nanosheets integrated heterojunction with two strategies to overcome hypoxic-tumor photodynamic therapy. Chem. Mater. 2019, 31, 3313–3323.

    CAS  Google Scholar 

  47. Yu, G. H.; Li, R. Q.; Leng, Z. H.; Gan, S. C. A 2D zinc-organic network being easily exfoliated into isolated sheets. J. Mol. Struct. 2016, 1117, 135–139.

    CAS  Google Scholar 

  48. Cui, W. R.; Zhang, C. R.; Jiang, W.; Liang, R. P.; Qiu, J. D. Covalent organic framework nanosheets for fluorescence sensing via metal coordination. ACS Appl. Nano Mater. 2019, 2, 5342–5349.

    CAS  Google Scholar 

  49. Ran, J. R.; Qu, J. T.; Zhang, H. P.; Wen, T.; Wang, H. L.; Chen, S. M.; Song, L.; Zhang, X. L.; Jing, L. Q.; Zheng, R. K. et al. 2D metal organic framework nanosheet: A universal platform promoting highly efficient visible-light-induced hydrogen production. Adv. Energy Mater. 2019, 9, 1803402.

    Google Scholar 

  50. Foster, J. A.; Henke, S.; Schneemann, A.; Fischer, R. A.; Cheetham, A. K. Liquid exfoliation of alkyl-ether functionalised layered metal-organic frameworks to nanosheets. Chem. Commun. 2016, 52, 10474–10477.

    CAS  Google Scholar 

  51. Li, P. Z.; Maeda, Y.; Xu, Q. Top-down fabrication of crystalline metal-organic framework nanosheets. Chem. Commun. 2011, 47, 8436–8438.

    CAS  Google Scholar 

  52. Saines, P. J.; Tan, J. C.; Yeung, H. H. M.; Barton, P. T.; Cheetham, A. K. Layered inorganic-organic frameworks based on the 2,2-dimethylsuccinate ligand: Structural diversity and its effect on nanosheet exfoliation and magnetic properties. Dalton Trans. 2012, 41, 8585–8593.

    CAS  Google Scholar 

  53. Beldon, P. J.; Tominaka, S.; Singh, P.; Dasgupta, T. S.; Bithell, E. G.; Cheetham, A. K. Layered structures and nanosheets of pyrimidinethiolate coordination polymers. Chem. Commun. 2014, 50, 3955–3957.

    CAS  Google Scholar 

  54. He, K.; Cao, Z.; Liu, R. R.; Miao, Y.; Ma, H. Y.; Ding, Y. In situ decomposition of metal-organic frameworks into ultrathin nanosheets for the oxygen evolution reaction. Nano Res. 2016, 9, 1856–1865.

    CAS  Google Scholar 

  55. Berlanga, I.; Luisa Ruiz-González, M.; María González-Calbet, J.; Fierro, J. L. G.; Mas-Ballesté, R.; Zamora, F. Delamination of layered covalent organic frameworks. Small 2011, 7, 1207–1211.

    CAS  Google Scholar 

  56. Bunck, D. N.; Dichtel, W. R. Bulk synthesis of exfoliated two-dimensional polymers using hydrazone-linked covalent organic frameworks. J. Am. Chem. Soc. 2013, 135, 14952–14955.

    CAS  Google Scholar 

  57. Li, C. Y.; Wu, C.; Zhang, B. Q. Enhanced CO2/CH4 separation performances of mixed matrix membranes incorporated with two-dimensional Ni-based MOF nanosheets. ACS Sustainable Chem. Eng. 2020, 8, 642–648.

    CAS  Google Scholar 

  58. Rao, M. R.; Fang, Y.; De Feyter, S.; Perepichka, D. F. Conjugated covalent organic frameworks via michael addition-elimination. J. Am. Chem. Soc. 2017, 139, 2421–2427.

    CAS  Google Scholar 

  59. Liu, G. H.; Jiang, Z. Y.; Yang, H.; Li, C. D.; Wang, H. J.; Wang, M. D.; Song, Y. M.; Wu, H.; Pan, F. S. High-efficiency water-selective membranes from the solution-diffusion synergy of calcium alginate layer and covalent organic framework (COF) layer. J. Membr. Sci. 2019, 572, 557–566.

    CAS  Google Scholar 

  60. Wang, X. R.; Chi, C. L.; Zhang, K.; Qian, Y. H.; Gupta, K. M.; Kang, Z. X.; Jiang, J. W.; Zhao, D. Reversed thermo-switchable molecular sieving membranes composed of two-dimensional metalorganic nanosheets for gas separation. Nat. Commun. 2017, 8, 14460.

    CAS  Google Scholar 

  61. Cliffe, M. J.; Castillo-Martinez, E.; Wu, Y.; Lee, J.; Forse, A. C.; Firth, F. C. N.; Moghadam, P. Z.; Fairen-Jimenez, D.; Gaultois, M. W.; Hill, J. A. et al. Metal-organic nanosheets formed via defect-mediated transformation of a hafnium metal-organic framework. J. Am. Chem. Soc. 2017, 139, 5397–5404.

    CAS  Google Scholar 

  62. Peng, Y.; Li, Y. S.; Ban, Y. J.; Jin, H.; Jiao, W. M.; Liu, X. L.; Yang, W. S. Metal-organic framework nanosheets as building blocks for molecular sieving membranes. Science 2014, 346, 1356–1359.

    CAS  Google Scholar 

  63. Chandra, S.; Kandambeth, S.; Biswal, B. P.; Lukose, B.; Kunjir, S. M.; Chaudhary, M.; Babarao, R.; Heine, T.; Banerjee, R. Chemically stable multilayered covalent organic nanosheets from covalent organic frameworks via mechanical delamination. J. Am. Chem. Soc. 2013, 135, 17853–17861.

    CAS  Google Scholar 

  64. Wang, H. S.; Li, J.; Li, J. Y.; Wang, K.; Ding, Y.; Xia, X. H. Lanthanide-based metal-organic framework nanosheets with unique fluorescence quenching properties for two-color intracellular adenosine imaging in living cells. NPG Asia Mater. 2017, 9, e354.

    CAS  Google Scholar 

  65. Huang, J.; Li, Y.; Huang, R. K.; He, C. T.; Gong, L.; Hu, Q.; Wang, L. S.; Xu, Y. T.; Tian, X. Y.; Liu, S. Y. et al. Electrochemical exfoliation of pillared-layer metal-organic framework to boost the oxygen evolution reaction. Angew. Chem., Int. Ed. 2018, 57, 4632–4636.

    CAS  Google Scholar 

  66. Zhang, Y. G.; Tan, M. X.; Li, H.; Zheng, Y. G.; Gao, S. J.; Zhang, H.; Ying, J. Y. Mesoscopic organic nanosheets peeled from stacked 2D covalent frameworks. Chem. Commun. 2011, 47, 7365–7367.

    CAS  Google Scholar 

  67. Mitra, S.; Sasmal, H. S.; Kundu, T.; Kandambeth, S.; Illath, K.; Díaz Díaz, D.; Banerjee, R. Targeted drug delivery in covalent organic nanosheets (CONs) via sequential postsynthetic modification. J. Am. Chem. Soc. 2017, 139, 4513–4520.

    CAS  Google Scholar 

  68. Chen, X. D.; Li, Y. S.; Wang, L.; Xu, Y.; Nie, A. M.; Li, Q. Q.; Wu, F.; Sun, W. W.; Zhang, X.; Vajtai, R. et al. High-lithium-affinity chemically exfoliated 2D covalent organic frameworks. Adv. Mater. 2019, 31, 1901640.

    Google Scholar 

  69. Zhu, W. J.; Yang, Y.; Jin, Q. T.; Chao, Y.; Tian, L. L.; Liu, J. J.; Dong, Z. L.; Liu, Z. Two-dimensional metal-organic-framework as a unique theranostic nano-platform for nuclear imaging and chemo-photodynamic cancer therapy. Nano Res. 2019, 12, 1307–1312.

    CAS  Google Scholar 

  70. Clough, A. J.; Yoo, J. W.; Mecklenburg, M. H.; Marinescu, S. C. Two-dimensional metal-organic surfaces for efficient hydrogen evolution from water. J. Am. Chem. Soc. 2015, 137, 118–121.

    CAS  Google Scholar 

  71. Lahiri, N.; Lotfizadeh, N.; Tsuchikawa, R.; Deshpande, V. V.; Louie, J. Hexaaminobenzene as a building block for a family of 2D coordination polymers. J. Am. Chem. Soc. 2017, 139, 19–22.

    CAS  Google Scholar 

  72. Zwaneveld, N. A. A.; Pawlak, R.; Abel, M.; Catalin, D.; Gigmes, D.; Bertin, D.; Porte, L. Organized formation of 2D extended covalent organic frameworks at surfaces. J. Am. Chem. Soc. 2008, 130, 6678–6679.

    CAS  Google Scholar 

  73. Dienstmaier, J. F.; Medina, D. D.; Dogru, M.; Knochel, P.; Bein, T.; Heckl, W. M.; Lackinger, M. Isoreticular two-dimensional covalent organic frameworks synthesized by on-surface condensation of diboronic acids. ACS Nano 2012, 6, 7234–7242.

    CAS  Google Scholar 

  74. Wang, Z. F.; Yu, Q.; Huang, Y. B.; An, H. D.; Zhao, Y.; Feng, Y. F.; Li, X.; Shi, X. L.; Liang, J. J.; Pan, F. S. et al. PolyCOFs: A new class of freestanding responsive covalent organic framework membranes with high mechanical performance. ACS Cent. Sci. 2019, 5, 1352–1359.

    CAS  Google Scholar 

  75. Liu, K. J.; Qi, H. Y.; Dong, R. H.; Shivhare, R.; Addicoat, M.; Zhang, T.; Sahabudeen, H.; Heine, T.; Mannsfeld, S.; Kaiser, U. et al. On-water surface synthesis of crystalline, few-layer two-dimensional polymers assisted by surfactant monolayers. Nat. Chem. 2019, 11, 994–1000.

    CAS  Google Scholar 

  76. Kambe, T.; Sakamoto, R.; Hoshiko, K.; Takada, K.; Miyachi, M.; Ryu, J. H.; Sasaki, S.; Kim, J.; Nakazato, K.; Takata, M. et al. π-Conjugated nickel bis(dithiolene) complex nanosheet. J. Am. Chem. Soc. 2013, 135, 2462–2465.

    CAS  Google Scholar 

  77. Dai, W. Y.; Shao, F.; Szczerbinski, J.; McCaffrey, R.; Zenobi, R.; Jin, Y. H.; Schlüter, A. D.; Zhang, W. Synthesis of a two-dimensional covalent organic monolayer through dynamic imine chemistry at the air/water interface. Angew. Chem., Int. Ed. 2016, 55, 213–217.

    CAS  Google Scholar 

  78. Sakamoto, R.; Hoshiko, K.; Liu, Q.; Yagi, T.; Nagayama, T.; Kusaka, S.; Tsuchiya, M.; Kitagawa, Y.; Wong, W. Y.; Nishihara, H. A photo-functional bottom-up bis(dipyrrinato)zinc(II) complex nanosheet. Nat. Commun. 2015, 6, 6713.

    CAS  Google Scholar 

  79. Rodenas, T.; Luz, I.; Prieto, G.; Seoane, B.; Miro, H.; Corma, A.; Kapteijn, F.; Llabrés i Xamena, F. X.; Gascon, J. Metal-organic framework nanosheets in polymer composite materials for gas separation. Nat. Mater. 2015, 14, 48–55.

    CAS  Google Scholar 

  80. Zhou, D.; Tan, X. Y.; Wu, H. M.; Tian, L. H.; Li, M. Synthesis of C-C bonded two-dimensional conjugated covalent organic framework films by Suzuki polymerization on a liquid-liquid interface. Angew. Chem., Int. Ed. 2019, 58, 1376–1381.

    CAS  Google Scholar 

  81. Faury, T.; Clair, S.; Abel, M.; Dumur, F.; Gigmes, D.; Porte, L. Sequential linking to control growth of a surface covalent organic framework. J. Phys. Chem. C 2012, 116, 4819–4823.

    CAS  Google Scholar 

  82. Spitzer, S.; Rastgoo-Lahrood, A.; Macknapp, K.; Ritter, V.; Sotier, S.; Heckl, W. M.; Lackinger, M. Solvent-free on-surface synthesis of boroxine COF monolayers. Chem. Commun. 2017, 53, 5147–5150.

    CAS  Google Scholar 

  83. Marele, A. C.; Mas-Ballesté, R.; Terracciano, L.; Rodríguez-Fernandez, J.; Berlanga, I.; Alexandre, S. S.; Otero, R.; Gallego, J. M.; Zamora, F.; Gomez-Rodriguez, J. M. Formation of a surface covalent organic framework based on polyester condensation. Chem. Commun. 2012, 48, 6779–6781.

    CAS  Google Scholar 

  84. Chen, C.; Joshi, T.; Li, H. F.; Chavez, A. D.; Pedramrazi, Z.; Liu, P. N.; Li, H.; Dichtel, W. R.; Bredas, J. L.; Crommie, M. F. Local electronic structure of a single-layer porphyrin-containing covalent organic framework. ACS Nano 2018, 12, 385–391.

    CAS  Google Scholar 

  85. Yue, J. Y.; Liu, X. H.; Sun, B.; Wang, D. The on-surface synthesis of imine-based covalent organic frameworks with non-aromatic linkage. Chem. Commun. 2015, 51, 14318–14321.

    CAS  Google Scholar 

  86. Dong, W. L.; Wang, L.; Ding, H. M.; Zhao, L.; Wang, D.; Wang, C.; Wan, L. J. Substrate orientation effect in the on-surface synthesis of tetrathiafulvalene-integrated single-layer covalent organic frameworks. Langmuir 2015, 31, 11755–11759.

    CAS  Google Scholar 

  87. Joshi, T.; Chen, C.; Li, H. F.; Diercks, C. S.; Wang, G. Q.; Waller, P. J.; Li, H.; Bredas, J. L.; Yaghi, O. M.; Crommie, M. F. Local electronic structure of molecular heterojunctions in a single-layer 2D covalent organic framework. Adv. Mater. 2019, 31, 1805941.

    Google Scholar 

  88. Xu, L. R.; Zhou, X.; Yu, Y. X.; Tian, W. Q.; Ma, J.; Lei, S. B. Surface-confined crystalline two-dimensional covalent organic frameworks via on-surface Schiff-base coupling. ACS Nano 2013, 7, 8066–8073.

    CAS  Google Scholar 

  89. Tsuruoka, T.; Furukawa, S.; Takashima, Y.; Yoshida, K.; Isoda, S.; Kitagawa, S. Nanoporous nanorods fabricated by coordination modulation and oriented attachment growth. Angew. Chem., Int. Ed. 2009, 48, 4739–4743.

    CAS  Google Scholar 

  90. Zhao, M. T.; Wang, Y. X.; Ma, Q. L.; Huang, Y.; Zhang, X.; Ping, J. F.; Zhang, Z. C.; Lu, Q. P.; Yu, Y. F.; Xu, H. et al. Ultrathin 2D metal-organic framework nanosheets. Adv. Mater. 2015, 27, 7372–7378.

    CAS  Google Scholar 

  91. Hu, M.; Ishihara, S.; Yamauchi, Y. Bottom-up synthesis of mono-dispersed single-crystalline cyano-bridged coordination polymer nanoflakes. Angew. Chem., Int. Ed. 2013, 52, 1235–1239.

    CAS  Google Scholar 

  92. Zhao, J.; Li, M. R.; Sun, J. L.; Liu, L. F.; Su, P. P.; Yang, Q. H.; Li, C. Metal-oxide nanoparticles with desired morphology inherited from coordination-polymer precursors. Chem.—Eur. J. 2012, 18, 3163–3168.

    CAS  Google Scholar 

  93. He, T.; Ni, B.; Zhang, S. M.; Gong, Y.; Wang, H. Q.; Gu, L.; Zhuang, J.; Hu, W. P.; Wang, X. Ultrathin 2D zirconium metal-organic framework nanosheets: Preparation and application in photocatalysis. Small 2018, 14, 1703929.

    Google Scholar 

  94. Jiang, Y.; Liu, H. Q.; Tan, X. H.; Guo, L. M.; Zhang, J. T.; Liu, S. N.; Guo, Y. J.; Zhang, J.; Wang, H. F.; Chu, W. G. Monoclinic ZIF-8 nanosheet-derived 2D carbon nanosheets as sulfur immobilizer for high-performance lithium sulfur batteries. ACS Appl. Mater. Interfaces 2017, 9, 25239–25249.

    CAS  Google Scholar 

  95. Xu, R. Y.; Wang, Y. F.; Duan, X. P.; Lu, K. D.; Micheroni, D.; Hu, A. G.; Lin, W. B. Nanoscale metal-organic frameworks for ratiometric oxygen sensing in live cells. J. Am. Chem. Soc. 2016, 138, 2158–2161.

    CAS  Google Scholar 

  96. Dai, R. H.; Peng, F.; Ji, P. F.; Lu, K. D.; Wang, C.; Sun, J. L.; Lin, W. B. Electron crystallography reveals atomic structures of metal-organic nanoplates with M123-O)83-OH)82-OH)6 (M = Zr, Hf) secondary building units. Inorg. Chem. 2017, 56, 8128–8134.

    CAS  Google Scholar 

  97. Duan, J. J.; Chen, S.; Zhao, C. Ultrathin metal-organic framework array for efficient electrocatalytic water splitting. Nat. Commun. 2017, 8, 15341.

    CAS  Google Scholar 

  98. Sun, F. Z.; Wang, G.; Ding, Y. Q.; Wang, C.; Yuan, B. B.; Lin, Y. Q. NiFe-based metal-organic framework nanosheets directly supported on nickel foam acting as robust electrodes for electrochemical oxygen evolution reaction. Adv. Energy Mater. 2018, 8, 1800584.

    Google Scholar 

  99. Zhang, X. K.; Li, H.; Wang, J.; Peng, D. L.; Liu, J. D.; Zhang, Y. T. In-situ grown covalent organic framework nanosheets on graphene for membrane-based dye/salt separation. J. Membr. Sci. 2019, 581, 321–330.

    CAS  Google Scholar 

  100. Guo, J.; Zhang, Y.; Zhu, Y. F.; Long, C.; Zhao, M. T.; He, M.; Zhang, X. F.; Lv, J. W.; Han, B.; Tang, Z. Y. Ultrathin chiral metal-organic-framework nanosheets for efficient enantioselective separation. Angew. Chem., Int. Ed. 2018, 57, 6873–6877.

    CAS  Google Scholar 

  101. Huang, L.; Zhang, X. P.; Han, Y. J.; Wang, Q. Q.; Fang, Y. X.; Dong, S. J. In situ synthesis of ultrathin metal-organic framework nanosheets: A new method for 2D metal-based nanoporous carbon electrocatalysts. J. Mater. Chem. A 2017, 5, 18610–18617.

    CAS  Google Scholar 

  102. Pustovarenko, A.; Goesten, M. G.; Sachdeva, S.; Shan, M. X.; Amghouz, Z.; Belmabkhout, Y.; Dikhtiarenko, A.; Rodenas, T.; Keskin, D.; Voets, I. K. et al. Nanosheets of nonlayered aluminum metal-organic frameworks through a surfactant-assisted method. Adv. Mater. 2018, 30, 1707234.

    Google Scholar 

  103. Shi, X. S.; Ma, D. W.; Xu, F.; Zhang, Z.; Wang Y. Table-salt enabled interface-confined synthesis of covalent organic framework (COF) nanosheets. Chem. Sci. 2020, 11, 989–996.

    CAS  Google Scholar 

  104. Hu, B. J.; Wu, P. Y. Facile synthesis of large-area ultrathin two-dimensional supramolecular nanosheets in water. Nano Res. 2020, 13, 868–874.

    CAS  Google Scholar 

  105. Tian, Y. Y.; Lu, Q. P.; Guo, X. X.; Wang, S. Y.; Gao, Y.; Wang, L. H. Au nanoparticles deposited on ultrathin two-dimensional covalent organic framework nanosheets for in vitro and intracellular sensing. Nanoscale 2020, 12, 7776–7781.

    CAS  Google Scholar 

  106. Nam, K. W.; Park, S. S.; dos Reis, R.; Dravid, V. P.; Kim, H.; Mirkin, C. A.; Stoddart, J. F. Conductive 2D metal-organic framework for high-performance cathodes in aqueous rechargeable zinc batteries. Nat. Commun. 2019, 10, 4948.

    Google Scholar 

  107. Li, Y. J.; Lin, L.; Tu, M.; Nian, P.; Howarth, A. J.; Farha, O. K.; Qiu, J. S.; Zhang, X. F. Growth of ZnO self-converted 2D nanosheet zeolitic imidazolate framework membranes by an ammonia-assisted strategy. Nano Res. 2018, 11, 1850–1860.

    CAS  Google Scholar 

  108. Zhang, C.; Wu, B. H.; Ma, M. Q.; Wang, Z. K.; Xu, Z. K. Ultrathin metal/covalent-organic framework membranes towards ultimate separation. Chem. Soc. Rev. 2019, 48, 3811–3841.

    CAS  Google Scholar 

  109. Varoon, K.; Zhang, X. Y.; Elyassi, B.; Brewer, D. D.; Gettel, M.; Kumar, S.; Lee, J. A.; Maheshwari, S.; Mittal, A.; Sung, C. Y. et al. Dispersible exfoliated zeolite nanosheets and their application as a selective membrane. Science 2011, 334, 72–75.

    CAS  Google Scholar 

  110. Li, H.; Song, Z. N.; Zhang, X. J.; Huang, Y.; Li, S. G.; Mao, Y. T.; Ploehn, H. J.; Bao, Y.; Yu, M. Ultrathin, molecular-sieving graphene oxide membranes for selective hydrogen separation. Science 2013, 342, 95–98.

    CAS  Google Scholar 

  111. Bernardo, P.; Drioli, E.; Golemme, G. Membrane gas separation: A review/state of the art. Ind. Eng. Chem. Res. 2009, 48, 4638–4663.

    CAS  Google Scholar 

  112. Noble, R. D. Perspectives on mixed matrix membranes. J. Membr. Sci. 2011, 378, 393–397.

    CAS  Google Scholar 

  113. Vellingiri, K.; Kumar, P.; Kim, K. H. Coordination polymers: Challenges and future scenarios for capture and degradation of volatile organic compounds. Nano Res. 2016, 9, 3181–3208.

    CAS  Google Scholar 

  114. Robeson, L. M. The upper bound revisited. J. Membr. Sci. 2008, 320, 390–400.

    CAS  Google Scholar 

  115. Yong, W. F.; Li, F. Y.; Xiao, Y. C.; Li, P.; Pramoda, K. P.; Tong, Y. W.; Chung, T. S. Molecular engineering of PIM-1/Matrimid blend membranes for gas separation. J. Membr. Sci. 2012, 407–408, 47–57.

    Google Scholar 

  116. Li, T.; Pan, Y. C.; Peinemann, K. V.; Lai, Z. P. Carbon dioxide selective mixed matrix composite membrane containing ZIF-7 nano-fillers. J. Membr. Sci. 2013, 425–426, 235–242.

    Google Scholar 

  117. Li, X. Q.; Jiang, Z. Y.; Wu, Y. Z.; Zhang, H. Y.; Cheng, Y. D.; Guo, R. L.; Wu, H. High-performance composite membranes incorporated with carboxylic acid nanogels for CO2 separation. J. Membr. Sci. 2015, 495, 72–80.

    CAS  Google Scholar 

  118. Kim, S.; Pechar, T. W.; Marand, E. Poly(imide siloxane) and carbon nanotube mixed matrix membranes for gas separation. Desalination 2006, 192, 330–339.

    CAS  Google Scholar 

  119. Mason, C. R.; Buonomenna, M. G.; Golemme, G.; Budd, P. M.; Galiano, F.; Figoli, A.; Friess, K.; Hynek, V. New organophilic mixed matrix membranes derived from a polymer of intrinsic microporosity and silicalite-1. Polymer 2013, 54, 2222–2230.

    CAS  Google Scholar 

  120. Bushell, A. F.; Attfield, M. P.; Mason, C. R.; Budd, P. M.; Yampolskii, Y.; Starannikova, L.; Rebrov, A.; Bazzarelli, F.; Bernardo, P.; Jansen, J. C. et al. Gas permeation parameters of mixed matrix membranes based on the polymer of intrinsic microporosity PIM-1 and the zeolitic imidazolate framework ZIF-8. J. Membr. Sci. 2013, 427, 48–62.

    CAS  Google Scholar 

  121. Cheng, Y. D.; Wang, X. R.; Jia, C. K.; Wang, Y. X.; Zhai, L. Z.; Wang, Q.; Zhao, D. Ultrathin mixed matrix membranes containing two-dimensional metal-organic framework nanosheets for efficient CO2/CH4 separation. J. Membr. Sci. 2017, 539, 213–223.

    CAS  Google Scholar 

  122. Ying, Y. P.; Tong, M. M.; Ning, S. C.; Ravi, S. K.; Peh, S. B.; Tan, S. C.; Pennycook, S. J.; Zhao, D. Ultrathin two-dimensional membranes assembled by ionic covalent organic nanosheets with reduced apertures for gas separation. J. Am. Chem. Soc. 2020, 142, 4472–4480.

    CAS  Google Scholar 

  123. Biswal, B. P.; Chaudhari, H. D.; Banerjee, R.; Kharul, U. K. Chemically stable covalent organic framework (COF)-polybenzimidazole hybrid membranes: Enhanced gas separation through pore modulation. Chem.—Eur. J. 2016, 22, 4695–4699.

    CAS  Google Scholar 

  124. Kang, Z. X.; Peng, Y. W.; Qian, Y. H.; Yuan, D. Q.; Addicoat, M. A.; Heine, T.; Hu, Z. G.; Tee, L.; Guo, Z. G.; Zhao, D. Mixed matrix membranes (MMMs) comprising exfoliated 2D covalent organic frameworks (COFs) for efficient CO2 separation. Chem. Mater. 2016, 28, 1277–1285.

    CAS  Google Scholar 

  125. Su, Y. Q.; Xu, H. T.; Wang, J. J.; Luo, X. K.; Xu, Z. L.; Wang, K. F.; Wang, W. Z. Nanorattle Au@PtAg encapsulated in ZIF-8 for enhancing CO2 photoreduction to CO. Nano Res. 2019, 12, 625–630.

    CAS  Google Scholar 

  126. Ullah, S.; Akram, B.; Ali, H.; Zhang, H.; Yang, H. Z.; Liu, Q. D.; Wang, X. 2-Methylimidazole assisted ultrafast synthesis of carboxylate-based metal-organic framework nano-structures in aqueous medium at room temperature. Sci. Bull. 2019, 64, 1103–1109.

    CAS  Google Scholar 

  127. Wu, Q. Y.; Zhang, C. X.; Sun, K.; Jiang, H. L. Microwave-assisted synthesis and photocatalytic performance of a soluble porphyrinic MOF. Acta Chim. Sin. 2020, 78, 688–694.

    Google Scholar 

  128. Liu, L. F.; Zhang, J. L.; Tan, X. N.; Zhang, B. X.; Shi, J. B.; Cheng, X. Y.; Tan, D. X.; Han, B. X.; Zheng, L. R.; Zhang, F. Y. Supercritical CO2 produces the visible-light-responsive TiO2/COF heterojunction with enhanced electron-hole separation for high-performance hydrogen evolution. Nano Res. 2020, 13, 983–988.

    CAS  Google Scholar 

  129. Fu, X. B.; Yu, G. P. Covalent organic frameworks catalysts. Prog. Chem. 2016, 28, 1006–1015.

    CAS  Google Scholar 

  130. Zhang, X. F.; Chang, L.; Yang, Z. J.; Shi, Y. N.; Long, C.; Han, J. Y.; Zhang, B. H.; Qiu, X. Y.; Li, G. D.; Tang, Z. Y. Facile synthesis of ultrathin metal-organic framework nanosheets for Lewis acid catalysis. Nano Res. 2019, 12, 437–440.

    CAS  Google Scholar 

  131. Fu, Y.; Zhou, H. M.; Yin, S.; Zhou, L. M. Facile synthesis of substrate supported ultrathin two-dimensional cobalt-based metal organic frameworks nanoflakes. Compos. Part A 2020, 134, 105910.

    CAS  Google Scholar 

  132. Huang, C. H.; Guo, Z. H.; Zheng, X.; Chen, X. Y.; Xue, Z. J.; Zhang, S. W.; Li, X.; Guan, B.; Li, X.; Hu, G. Q. et al. Deformable metal-organic framework nanosheets for heterogeneous catalytic reactions. J. Am. Chem. Soc. 2020, 142, 9408–9414.

    CAS  Google Scholar 

  133. Liu, W. B.; Li, X. K.; Wang, C. M.; Pan, H. H.; Liu, W. P.; Wang, K.; Zeng, Q. D.; Wang, R. M.; Jiang, J. Z. A scalable general synthetic approach toward ultrathin imine-linked two-dimensional covalent organic framework nanosheets for photocatalytic CO2 reduction. J. Am. Chem. Soc. 2019, 141, 17431–17440.

    CAS  Google Scholar 

  134. Lan, G. X.; Li, Z.; Veroneau, S. S.; Zhu, Y. Y.; Xu, Z. W.; Wang, C.; Lin, W. B. Photosensitizing metal-organic layers for efficient sunlight-driven carbon dioxide reduction. J. Am. Chem. Soc. 2018, 140, 12369–12373.

    CAS  Google Scholar 

  135. Cao, L. Y.; Lin, Z. K.; Peng, F.; Wang, W. W.; Huang, R. Y; Wang, C.; Yan, J. W.; Liang, J.; Zhang, Z. M.; Zhang, T. et al. Self-supporting metal-organic layers as single-site solid catalysts. Angew. Chem., Int. Ed. 2016, 55, 4962–4966.

    CAS  Google Scholar 

  136. Shi, W. J.; Cao, L. Y.; Zhang, H.; Zhou, X.; An, B.; Lin, Z. K.; Dai, R. H.; Li, J. F.; Wang, C.; Lin, W. B. Surface modification of two-dimensional metal-organic layers creates biomimetic catalytic microenvironments for selective oxidation. Angew. Chem., Int. Ed. 2017, 56, 9704–9709.

    CAS  Google Scholar 

  137. He, S.; Chen, Y. F.; Zhang, Z. C.; Ni, B.; He, W.; Wang, X. Competitive coordination strategy for the synthesis of hierarchical-pore metal-organic framework nanostructures. Chem. Sci. 2016, 7, 7101–7105.

    CAS  Google Scholar 

  138. Huang, Y.; Zhao, M. T.; Han, S. K.; Lai, Z. C.; Yang, J.; Tan, C. L.; Ma, Q. L.; Lu, Q. P.; Chen, J. Z.; Zhang, X. et al. Growth of Au nanoparticles on 2D metalloporphyrinic metal-organic framework nanosheets used as biomimetic catalysts for cascade reactions. Adv. Mater. 2017, 29, 1700102.

    Google Scholar 

  139. Cai, G. R.; Ding, M. L.; Wu, Q. Y.; Jiang, H. L. Encapsulating soluble active species into hollow crystalline porous capsules beyond integration of homogeneous and heterogeneous catalysis. Natl. Sci. Rev. 2020, 7, 37–45.

    CAS  Google Scholar 

  140. Yang, Q. H.; Yang, C. C.; Lin, C. H.; Jiang, H. L. Metal-organic-framework-derived hollow N-doped porous carbon with ultrahigh concentrations of single Zn atoms for efficient carbon dioxide conversion. Angew. Chem., Int. Ed. 2019, 58, 3511–3515.

    CAS  Google Scholar 

  141. Zhao, S. L.; Wang, Y.; Dong, J. C.; He, C. T.; Yin, H. J.; An, P. F.; Zhao, K.; Zhang, X. F.; Gao, C.; Zhang, L. J. et al. Ultrathin metal-organic framework nanosheets for electrocatalytic oxygen evolution. Nat. Energy 2016, 1, 16184.

    CAS  Google Scholar 

  142. Xu, Y. X.; Li, B.; Zheng, S. S.; Wu, P.; Zhan, J. Y.; Xue, H. G.; Xu, Q.; Pang, H. Ultrathin two-dimensional cobalt-organic framework nanosheets for high-performance electrocatalytic oxygen evolution. J. Mater. Chem. A 2018, 6, 22070–22076.

    CAS  Google Scholar 

  143. Zhong, H. X.; Ly, K. H.; Wang, M. C.; Krupskaya, Y.; Han, X. C.; Zhang, J. C.; Zhang, J.; Kataev, V.; Büchner, B.; Weidinger, I. M. et al. A phthalocyanine-based layered two-dimensional conjugated metal-organic framework as a highly efficient electrocatalyst for the oxygen reduction reaction. Angew. Chem., Int. Ed. 2019, 58, 10677–10682.

    CAS  Google Scholar 

  144. Zhao, K. M.; Liu, S. Q.; Ye, G. Y.; Wei, X. L.; Su, Y. K.; Zhu, W. W.; Zhou, Z.; He, Z. Ultrasmall 2D CoxZn2-x(benzimidazole)4 metalorganic framework nanosheets and their derived Co nanodots@Co, N-codoped graphene for efficient oxygen reduction reaction. ChemSusChem 2020, 13, 1556–1567.

    CAS  Google Scholar 

  145. Dong, R. H.; Pfeffermann, M.; Liang, H. W.; Zheng, Z. K.; Zhu, X.; Zhang, J.; Feng X. L. Large-area, free-standing, two-dimensional supramolecular polymer single-layer sheets for highly efficient electrocatalytic hydrogen evolution. Angew. Chem., Int. Ed. 2015, 54, 12058–12063.

    CAS  Google Scholar 

  146. Dong, R. H.; Zheng, Z. K.; Tranca, D. C.; Zhang, J.; Chandrasekhar, N.; Liu, S. H.; Zhuang, X. D.; Seifert, G.; Feng X. L. Immobilizing molecular metal dithiolene-diamine complexes on 2D metal-organic frameworks for electrocatalytic H2 production. Chem.—Eur. J. 2017, 23, 2255–2260.

    CAS  Google Scholar 

  147. Patra, B. C.; Khilari, S.; Manna, R. N.; Mondal, S.; Pradhan, D.; Pradhan, A.; Bhaumik, A. A metal-free covalent organic polymer for electrocatalytic hydrogen evolution. ACS Catal. 2017, 7, 6120–6127.

    CAS  Google Scholar 

  148. Li, Q.; Zhang, L. N.; Tao, X. M.; Ding, X. Review of flexible temperature sensing networks for wearable physiological monitoring. Adv. Healthc. Mater. 2017, 6, 1601371.

    Google Scholar 

  149. Li, J.; Bao, R. R.; Tao, J.; Peng, Y. Y.; Pan, C. F. Recent progress in flexible pressure sensor arrays: From design to applications. J. Mater. Chem. C 2018, 6, 11878–11892.

    CAS  Google Scholar 

  150. Kukkar, D; Vellingiri, K; Kaur, R; Bhardwaj, S. K.; Deep, A.; Kim, K. H. Nanomaterials for sensing of formaldehyde in air: Principles, applications, and performance evaluation. Nano Res. 2019, 12, 225–246.

    CAS  Google Scholar 

  151. Beer, P. D.; Gale, P. A. Anion recognition and sensing: The state of the art and future perspectives. Angew. Chem., Int. Ed. 2001, 40, 486–516.

    CAS  Google Scholar 

  152. Wang, Z. Q.; Wu, S. S.; Wang, J.; Yu, A. L.; Wei, G. Carbon nanofiber-based functional nanomaterials for sensor applications. Nanomaterials 2019, 9, 1045.

    CAS  Google Scholar 

  153. Yi, F. Y.; Chen, D. X.; Wu, M. K.; Han, L.; Jiang, H. L. Chemical sensors based on metal-organic frameworks. Chempluschem 2016, 81, 675–690.

    CAS  Google Scholar 

  154. Sahiner, N.; Demirci, S. The use of covalent organic frameworks as template for conductive polymer synthesis and their sensor applications. J. Porous Mater. 2019, 26, 481–492.

    CAS  Google Scholar 

  155. Qiu, Q. M.; Chen, H. Y.; You, Z. H.; Feng, Y. Y.; Wang, X.; Wang, Y. X.; Ying, Y. B. Shear exfoliated metal-organic framework nanosheet-enabled flexible sensor for real-time monitoring of superoxide anion. ACS Appl. Mater. Interfaces 2020, 12, 5429–5436.

    CAS  Google Scholar 

  156. Han, L. J.; Zheng, D.; Chen, S. G.; Zheng, H. G.; Ma, J. A highly solvent-stable metal-organic framework nanosheet: Morphology control, exfoliation, and luminescent property. Small 2018, 14, 1703873.

    Google Scholar 

  157. He, C. B.; Lu, K. D.; Lin, W. B. Nanoscale metal-organic frameworks for real-time intracellular pH sensing in live cells. J. Am. Chem. Soc. 2014, 136, 12253–12256.

    CAS  Google Scholar 

  158. Xu, H.; Gao, J. K.; Qian, X. F.; Wang, J. P.; He, H. J.; Cui, Y. J.; Yang, Y.; Wang, Z. Y.; Qian, G. D. Metal-organic framework nanosheets for fast-response and highly sensitive luminescent sensing of Fe3+. J. Mater. Chem. A 2016, 4, 10900–10905.

    CAS  Google Scholar 

  159. Wang, Y. X.; Zhao, M. T.; Ping, J. F.; Chen, B.; Cao, X. H.; Huang, Y.; Tan, C. L.; Ma, Q. L.; Wu, S. X.; Yu, Y. F. et al. Bioinspired design of ultrathin 2D bimetallic metal-organic-framework nanosheets used as biomimetic enzymes. Adv. Mater. 2016, 28, 4149–4155.

    CAS  Google Scholar 

  160. He, L. H.; Duan, F. H.; Song, Y. P.; Guo, C. P.; Zhao, H.; Tian, J. Y.; Zhang, Z. H.; Liu, C. S.; Zhang, X. J.; Wang, P. Y. et al. 2D zirconium-based metal-organic framework nanosheets for highly sensitive detection of mucin 1: Consistency between electrochemical and surface plasmon resonance methods. 2D Mater. 2017, 4, 025098.

    Google Scholar 

  161. Lu, W. B.; Wu, X. F. Ni-MOF nanosheet arrays: Efficient non-noble-metal electrocatalysts for non-enzymatic monosaccharide sensing. New J. Chem. 2018, 42, 3180–3183.

    CAS  Google Scholar 

  162. Zhao, Y. W.; Ling, J.; Li, S. G.; Li, M.; Liu, A. R.; Liu, S. Q. Synthesis of porphyrin-based two-dimensional metal-organic framework nanodisk with small size and few layers. J. Mater. Chem. A 2018, 6, 2828–2833.

    CAS  Google Scholar 

  163. Das, G.; Biswal, B. P.; Kandambeth, S.; Venkatesh, V.; Kaur, G.; Addicoat, M.; Heine, T.; Verma, S.; Banerjee, R. Chemical sensing in two dimensional porous covalent organic nanosheets. Chem. Sci. 2015, 6, 3931–3939.

    CAS  Google Scholar 

  164. Albacete, P.; López-Moreno, A.; Mena-Hernando, S.; Platero-Prats, A. E.; Pérez, E. M.; Zamora, F. Chemical sensing of water contaminants by a colloid of a fluorescent imine-linked covalent organic framework. Chem. Commun. 2019, 55, 1382–1385.

    CAS  Google Scholar 

  165. Peng, Y. W.; Huang, Y.; Zhu, Y. H.; Chen, B.; Wang, L. Y.; Lai, Z. C.; Zhang, Z. C.; Zhao, M. T.; Tan, C. L.; Yang, N. L. et al. Ultrathin two-dimensional covalent organic framework nanosheets: Preparation and application in highly sensitive and selective DNA detection. J. Am. Chem. Soc. 2017, 139, 8698–8704.

    CAS  Google Scholar 

  166. Sun, W. W.; Li, Y. J.; Liu, S. K.; Guo, Q. P.; Zhu, Y. H.; Hong, X. B.; Zheng, C. M.; Xie, K. Catalytic Co9S8 decorated carbon nanoboxes as efficient cathode host for long-life lithium-sulfur batteries. Nano Res. 2020, 13, 2143–2148.

    CAS  Google Scholar 

  167. Wang, F. X.; Wu, X. W.; Yuan, X. H.; Liu, Z. C.; Zhang, Y.; Fu, L. J.; Zhu, Y. S.; Zhou, Q. M.; Wu, Y. P.; Huang, W. Latest advances in supercapacitors: From new electrode materials to novel device designs. Chem. Soc. Rev. 2017, 46, 6816–6854.

    CAS  Google Scholar 

  168. Liu, J. L.; Shi, W. X.; Wang, X. Cluster-nuclei coassembled into two-dimensional hybrid CuO-PMA sub-1 nm nanosheets. J. Am. Chem. Soc. 2019, 141, 18754–18758.

    CAS  Google Scholar 

  169. Yang, H. Z.; Wang, X. Secondary-component incorporated hollow MOFs and derivatives for catalytic and energy-related applications. Adv. Mater. 2019, 31, 1800743.

    Google Scholar 

  170. Liu, Y. X.; Wang, Y. Z.; Wang, H. Q.; Zhao, P. H.; Hou, H.; Guo, L. Acetylene black enhancing the electrochemical performance of NiCo-MOF nanosheets for supercapacitor electrodes. Appl. Surf. Sci. 2019, 492, 455–463.

    CAS  Google Scholar 

  171. Zheng, Y.; Zheng, S. S.; Xu, Y. X.; Xue, H. G.; Liu, C. S.; Pang, H. Ultrathin two-dimensional cobalt-organic frameworks nanosheets for electrochemical energy storage. Chem. Eng. J. 2019, 373, 1319–1328.

    CAS  Google Scholar 

  172. Li, C.; Hu, X. S.; Tong, W.; Yan, W. S.; Lou, X. B.; Shen, M.; Hu, B. W. Ultrathin manganese-based metal-organic framework nanosheets: Low-cost and energy-dense lithium storage anodes with the coexistence of metal and ligand redox activities. ACS Appl. Mater. Interfaces 2017, 9, 29829–29838.

    CAS  Google Scholar 

  173. Feng, D. W.; Lei, T.; Lukatskaya, M. R.; Park, J.; Huang, Z. H.; Lee, M.; Shaw, L.; Chen, S. C.; Yakovenko, A. A.; Kulkarni, A. et al. Robust and conductive two-dimensional metal-organic frameworks with exceptionally high volumetric and areal capacitance. Nat. Energy 2018, 3, 30–36.

    CAS  Google Scholar 

  174. Zhan, X. J.; Chen, Z.; Zhang, Q. C. Recent progress in two-dimensional COFs for energy-related applications. J. Mater. Chem. A 2017, 5, 14463–14479.

    CAS  Google Scholar 

  175. Wang, M. Y.; Guo, H.; Xue, R.; Li, Q.; Liu, H.; Wu, N.; Yao, W. Q.; Yang, W. Covalent organic frameworks: A new class of porous organic frameworks for supercapacitor electrodes. Chemelectrochem 2019, 6, 2984–2997.

    CAS  Google Scholar 

  176. Sun, J. H.; Klechikov, A.; Moise, C.; Prodana, M.; Enachescu, M.; Talyzin, A. V. A molecular pillar approach to grow vertical covalent organic framework nanosheets on graphene: Hybrid materials for energy storage. Angew. Chem, Int. Ed. 2018, 57, 1034–1038.

    CAS  Google Scholar 

Download references

Acknowledgements

This project was supported by the National Natural Science Foundation of China for Distinguished Young Scholars (No. 21625401) and the National Natural Science Foundation of China (Nos. 21727808 and 21971114).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Weina Zhang or Fengwei Huo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, Y., Zhang, J., Shen, Y. et al. Emerging porous nanosheets: From fundamental synthesis to promising applications. Nano Res. 14, 1–28 (2021). https://doi.org/10.1007/s12274-020-3082-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-3082-4

Keywords

Navigation