Skip to main content
Log in

Atomistic modeling and rational design of optothermal tweezers for targeted applications

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Optical manipulation of micro/nanoscale objects is of importance in life sciences, colloidal science, and nanotechnology. Optothermal tweezers exhibit superior manipulation capability at low optical intensity. However, our implicit understanding of the working mechanism has limited the further applications and innovations of optothermal tweezers. Herein, we present an atomistic view of opto-thermo-electro-mechanic coupling in optothermal tweezers, which enables us to rationally design the tweezers for optimum performance in targeted applications. Specifically, we have revealed that the non-uniform temperature distribution induces water polarization and charge separation, which creates the thermoelectric field dominating the optothermal trapping. We further design experiments to systematically verify our atomistic simulations. Guided by our new model, we develop new types of optothermal tweezers of high performance using low-concentrated electrolytes. Moreover, we demonstrate the use of new tweezers in opto-thermophoretic separation of colloidal particles of the same size based on the difference in their surface charge, which has been challenging for conventional optical tweezers. With the atomistic understanding that enables the performance optimization and function expansion, optothermal tweezers will further their impacts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Killian, J. L.; Ye, F.; Wang, M. D. Optical tweezers: A force to be reckoned with. Cell 2018, 175, 1445–1448.

    CAS  Google Scholar 

  2. Zhang, P. R.; Chen, C. Y.; Guo, F.; Philippe, J.; Gu, Y. Y.; Tian, Z. H.; Bachman, H.; Ren, L. Q.; Yang, S. J.; Zhong, Z. W. et al. Contactless, programmable acoustofluidic manipulation of objects on water. Lab Chip 2019, 19, 3397–3404.

    CAS  Google Scholar 

  3. Zhang, P. R.; Chen, C. Y.; Su, X. Y.; Mai, J.; Gu, Y. Y.; Tian, Z. H.; Zhu, H. D.; Zhong, Z. W.; Fu, H.; Yang, S. J. et al. Acoustic streaming vortices enable contactless, digital control of droplets. Sci. Adv. 2020, 6, eaba0606.

    Google Scholar 

  4. Crane, M. J.; Pandres, E. P.; Davis, E. J.; Holmberg, V. C.; Pauzauskie, P. J. Optically oriented attachment of nanoscale metal-semiconductor heterostructures in organic solvents via photonic nanosoldering. Nat. Commun. 2019, 10, 4942.

    Google Scholar 

  5. Ashkin, A.; Dziedzic, J. M.; Bjorkholm, J. E.; Chu, S. Observation of a single-beam gradient force optical trap for dielectric particles. Opt. Lett. 1986, 11, 288–290.

    CAS  Google Scholar 

  6. Ilic, O.; Atwater, H. A. Self-stabilizing photonic levitation and propulsion of nanostructured macroscopic objects. Nat. Photonics 2019, 13, 289–295.

    CAS  Google Scholar 

  7. Grier, D. G. A revolution in optical manipulation. Nature 2003, 424, 810–816.

    CAS  Google Scholar 

  8. Rasmussen, M. B.; Oddershede, L. B.; Siegumfeldt, H. Optical tweezers cause physiological damage to Escherichia coli and Listeria bacteria. Appl. Environ. Microbiol. 2008, 74, 2441–2446.

    CAS  Google Scholar 

  9. Babynina, A.; Fedoruk, M.; Kühler, P.; Meledin, A.; Döblinger, M.; Lohmuller, T. Bending gold nanorods with light. Nano Lett. 2016, 16, 6485–6490.

    CAS  Google Scholar 

  10. Grigorenko, A. N.; Roberts, N. W.; Dickinson, M. R.; Zhang, Y. Nanometric optical tweezers based on nanostructured substrates. Nat. Photonics 2008, 2, 365–370.

    CAS  Google Scholar 

  11. Zheng, Y. X.; Ryan, J.; Hansen, P.; Cheng, Y. T.; Lu, T. J.; Hesselink, L. Nano-optical conveyor belt, part II: Demonstration of handoff between near-field optical traps. Nano Lett. 2014, 14, 2971–2976.

    CAS  Google Scholar 

  12. Lin, L. H.; Hill, E. H.; Peng, X. L.; Zheng, Y. B. Optothermal manipulations of colloidal particles and living cells. Acc. Chem. Res. 2018, 51, 1465–1474.

    CAS  Google Scholar 

  13. Lin, L. H.; Wang, M. S.; Peng, X. L.; Lissek, E. N.; Mao, Z. M.; Scarabelli, L.; Adkins, E.; Coskun, S.; Unalan, H. E.; Korgel, B. A. et al. Opto-thermoelectric nanotweezers. Nat. Photonics 2018, 12, 195–201.

    CAS  Google Scholar 

  14. Lin, L. H.; Zhang, J. L.; Peng, X. L.; Wu, Z. L.; Coughlan, A. C. H.; Mao, Z. M.; Bevan, M. A.; Zheng, Y. B. Opto-thermophoretic assembly of colloidal matter. Sci. Adv. 2017, 3, e1700458.

    Google Scholar 

  15. Lin, L. H.; Peng, X. L.; Wei, X. L.; Mao, Z. M.; Xie, C.; Zheng, Y. B. Thermophoretic tweezers for low-power and versatile manipulation of biological cells. ACS Nano 2017, 11, 3147–3154.

    CAS  Google Scholar 

  16. Hill, E. H.; Li, J. G.; Lin, L. H.; Liu, Y. R.; Zheng, Y. B. Optothermophoretic attraction, trapping, and dynamic manipulation of lipid vesicles. Langmuir 2018, 34, 13252–13262.

    CAS  Google Scholar 

  17. Lin, L. H.; Peng, X. L.; Wang, M. S.; Scarabelli, L.; Mao, Z. M.; Liz-Marzan, L. M.; Becker, M. F.; Zheng, Y. B. Light-directed reversible assembly of plasmonic nanoparticles using plasmon-enhanced thermophoresis. ACS Nano 2016, 10, 9659–9668.

    CAS  Google Scholar 

  18. Lin, L. H.; Peng, X. L.; Zheng, Y. B. Reconfigurable opto-thermoelectric printing of colloidal particles. Chem. Commun. 2017, 53, 7357–7360.

    CAS  Google Scholar 

  19. Lin, L. H.; Kollipara, P. S.; Zheng, Y. B. Digital manufacturing of advanced materials: Challenges and perspective. Mater. Today 2019, 28, 49–62.

    Google Scholar 

  20. Lin, L. H.; Lepeshov, S.; Krasnok, A.; Jiang, T. Z.; Peng, X. L.; Korgel, B. A.; Alù, A.; Zheng, Y. B. All-optical reconfigurable chiral meta-molecules. Mater. Today 2019, 25, 10–20.

    CAS  Google Scholar 

  21. Brenner, H. Elementary kinematical model of thermal diffusion in liquids and gases. Phys. Rev. E 2006, 74, 036306.

    Google Scholar 

  22. Lüsebrink, D.; Yang, M. C.; Ripoll, M. Thermophoresis of colloids by mesoscale simulations. J. Phys. Condens Matter 2012, 24, 284132.

    Google Scholar 

  23. Putnam, S. A.; Cahill, D. G. Transport of nanoscale latex spheres in a temperature gradient. Langmuir 2005, 27, 5317–5323.

    Google Scholar 

  24. Putnam, S. A.; Cahill, D. G.; Wong, G. C. L. Temperature dependence of thermodiffusion in aqueous suspensions of charged nanoparticles. Langmuir 2007, 23, 9221–9228.

    CAS  Google Scholar 

  25. Bresme, F.; Hafskjold, B.; Wold, I. Nonequilibrium molecular dynamics study of heat conduction in ionic systems. J. Phys. Chem. 1996, 100, 1879–1888.

    CAS  Google Scholar 

  26. Di Lecce, S.; Bresme, F. Thermal polarization of water influences the thermoelectric response of aqueous solutions. J. Phys. Chem. B 2018, 122, 1662–1668.

    CAS  Google Scholar 

  27. Leaist, D. G; Hao, L. Very large thermal separations for polyelectrolytes in salt solutions. J. Chem. Soc., Faraday Trans. 1994, 90, 1909–1911.

    CAS  Google Scholar 

  28. Reichl, M.; Herzog, M.; Götz, A.; Braun, D. Why charged molecules move across a temperature gradient: The role of electric fields. Phys. Rev. Lett. 2014, 112, 198101.

    Google Scholar 

  29. Würger, A. Transport in charged colloids driven by thermoelectricity. Phys. Rev. Lett. 2008, 101, 108302.

    Google Scholar 

  30. Majee, A.; Würger, A. Thermocharge of a hot spot in an electrolyte solution. Soft Matter 2013, 9, 2145–2153.

    CAS  Google Scholar 

  31. Vigolo, D.; Rusconi, R.; Stone, H. A.; Piazza, R. Thermophoresis: Microfluidics characterization and separation. Soft Matter 2010, 6, 3489–3493.

    CAS  Google Scholar 

  32. Sehnem, A. L.; Figueiredo Neto, A. M.; Aquino, R.; Campos, A. F. C.; Tourinho, F. A.; Depeyrot, J. Temperature dependence of the Soret coefficient of ionic colloids. Phys. Rev. E 2015, 92, 042311.

    CAS  Google Scholar 

  33. Liu, Y. R.; Lin, L. H.; Bangalore Rajeeva, B.; Jarrett, J. W.; Li, X. T.; Peng, X. L.; Kollipara, P.; Yao, K.; Akinwande, D.; Dunn, A. K. et al. Nanoradiator-mediated deterministic opto-thermoelectric manipulation. ACS Nano 2018, 12, 10383–10392.

    CAS  Google Scholar 

  34. Lin, L. H.; Peng, X. L.; Mao, Z. M.; Wei, X. L.; Xie, C.; Zheng, Y. B. Interfacial-entropy-driven thermophoretic tweezers. Lab Chip 2017, 17, 3061–3070.

    CAS  Google Scholar 

  35. Bresme, F.; Lervik, A.; Bedeaux, D.; Kjelstrup, S. Water polarization under thermal gradients. Phys. Rev. Lett. 2008, 101, 020602.

    Google Scholar 

  36. Zhang, S. L.; Juvert, J.; Cooper, J. M.; Neale, S. L. Manipulating and assembling metallic beads with optoelectronic tweezers. Sci. Rep. 2016, 6, 32840.

    CAS  Google Scholar 

  37. Witte, C.; Reboud, J.; Cooper, J. M.; Neale, S. L. Channel integrated optoelectronic tweezer chip for microfluidic particle manipulation. J. Micromech. Microeng. 2020, 30, 045004.

    CAS  Google Scholar 

  38. Zhao, D.; Wang, H.; Khan, Z. U.; Chen, J. C.; Gabrielsson, R.; Jonsson, M. P.; Berggren, M.; Crispin, X. Ionic thermoelectric supercapacitors. Energy Environ. Sci. 2016, 9, 1450–1457.

    CAS  Google Scholar 

  39. Würger, A. Thermal non-equilibrium transport in colloids. Rep. Prog. Phys. 2010, 73, 126601.

    Google Scholar 

  40. Bregulla, A. P.; Würger, A.; Günther, K.; Mertig, M.; Cichos, F. Thermo-osmotic flow in thin films. Phys. Rev. Lett. 2016, 116, 188303.

    Google Scholar 

  41. Gargiulo, J.; Brick, T.; Violi, I. L.; Herrera, F. C.; Shibanuma, T.; Albella, P.; Requejo, F. G.; Cortés, E.; Maier, S. A.; Stefani, F. D. Understanding and reducing photothermal forces for the fabrication of au nanoparticle dimers by optical printing. Nano Lett. 2017, 17, 5747–5755.

    CAS  Google Scholar 

  42. Underwood, R.; Tomlinson-Phillips, J.; Ben-Amotz, D. Are long-chain alkanes hydrophilic?. J. Phys. Chem. B 2010, 114, 8646–8651.

    CAS  Google Scholar 

  43. Guthrie, G. Jr.; Wilson, J. N.; Schomaker, V. Theory of the thermal diffusion of electrolytes in a clusius column. J. Chem. Phys. 1949, 17, 310–313.

    CAS  Google Scholar 

  44. Kollipara, P. S.; Lin, L. H; Zheng, Y. B. Thermo-electro-mechanics at individual particles in complex colloidal systems. J. Phys. Chem. C 2019, 123, 21639–21644.

    CAS  Google Scholar 

  45. Ohsawa, K.; Murata, M.; Ohshima, H. Zeta potential and surface charge density of polystyrene-latex; comparison with synaptic vesicle and brush border membrane vesicle. Colloid Polym. Sci. 1986, 264, 1005–1009.

    CAS  Google Scholar 

  46. Scales, P. J.; Grieser, F.; Healy, T. W.; White, L. R.; Chan, D. Y. C. Electrokinetics of the silica-solution interface: A flat plate streaming potential study. Langmuir 1992, 8, 965–974.

    CAS  Google Scholar 

  47. Williams, R.; Goodman, A. M. Wetting of thin layers of SiO2 by water. Appl. Phys. Lett. 1974, 25, 531–532.

    CAS  Google Scholar 

  48. Huang, D. M.; Cottin-Bizonne, C.; Ybert, C.; Bocquet, L. Ion-specific anomalous electrokinetic effects in hydrophobic nanochannels. Phys. Rev. Lett. 2007, 98, 177801.

    Google Scholar 

  49. Römer, F.; Wang, Z. L.; Wiegand, S.; Bresme, F. Alkali halide solutions under thermal gradients: Soret coefficients and heat transfer mechanisms. J. Phys. Chem. B 2013, 117, 8209–8222.

    Google Scholar 

  50. Wang, H. D.; Hu, S. Q.; Takahashi, K.; Zhang, X.; Takamatsu, H.; Chen, J. Experimental study of thermal rectification in suspended monolayer graphene. Nat. Commun. 2017, 8, 15843.

    CAS  Google Scholar 

  51. Ma, D. K.; Ding, H. R.; Wang, X. M.; Yang, N.; Zhang, X. The unexpected thermal conductivity from graphene disk, carbon nanocone to carbon nanotube. Int. J. Heat Mass Transfer 2017, 108, 940–944.

    CAS  Google Scholar 

  52. Faxen, H. Die bewegung einer starren kugel langs der achse eines mit zaher flussigkeit gefullten rohres. Ark. Mat., Astron. Fys. 1923, 17, 1–28.

    Google Scholar 

  53. Takeyama, N.; Nakashima, K. Proportionality of intrinsic heat of transport to standard entropy of hydration for aqueous ions. J. Solution Chem. 1988, 17, 305–325.

    CAS  Google Scholar 

  54. Würger, A. Is Soret equilibrium a non-equilibrium effect?. Comptes Rendus Mécanique 2013, 341, 438–448.

    Google Scholar 

  55. MacDonald, M. P.; Spalding, G. C.; Dholakia, K. Microfluidic sorting in an optical lattice. Nature 2003, 426, 421–424.

    CAS  Google Scholar 

  56. Flores-Flores, E.; Torres-Hurtado, S. A.; Páez, R.; Ruiz, U.; Beltrán-Pérez, G.; Neale, S. L.; Ramirez-San-Juan, J. C.; Ramos-Garcia, R. Trapping and manipulation of microparticles using laser-induced convection currents and photophoresis. Biomed. Opt. Express 2015, 6, 4079–4087.

    CAS  Google Scholar 

  57. Chen, J. J.; Kang, Z. W.; Kong, S. K.; Ho, H. P. Plasmonic random nanostructures on fiber tip for trapping live cells and colloidal particles. Opt. Lett. 2015, 40, 3926–3929.

    CAS  Google Scholar 

  58. Braun, D.; Libchaber, A. Trapping of DNA by thermophoretic depletion and convection. Phys. Rev. Lett. 2002, 89, 188103.

    Google Scholar 

  59. Berendsen, H. J. C.; Grigera, J. R.; Straatsma, T. P. The missing term in effective pair potentials. J. Phys. Chem. 1987, 91, 6269–6271.

    CAS  Google Scholar 

  60. Ding, H. R.; Peng, G. L.; Mo, S. Q.; Ma, D. K.; Sharshir, S. W.; Yang, N. Ultra-fast vapor generation by a graphene nano-ratchet: A theoretical and simulation study. Nanoscale 2017, 9, 19066–19072.

    CAS  Google Scholar 

  61. Cornell, W. D.; Cieplak, P.; Bayly, C. I.; Gould, I. R.; Merz, K. M.; Ferguson, D. M.; Spellmeyer, D. C.; Fox, T.; Caldwell, J. W.; Kollman, P. A. A second generation force field for the simulation of proteins, nucleic acids, and organic molecules. J. Am. Chem. Soc. 1995, 117, 5179–5197.

    CAS  Google Scholar 

  62. Sui, X.; Ding, H. R.; Yuan, Z. W.; Leong, C. F.; Goh, K.; Li, W.; Yang, N.; D’Alessandro, D. M.; Chen, Y. The roles of metal-organic frameworks in modulating water permeability of graphene oxide-based carbon membranes. Carbon 2019, 148, 277–289.

    CAS  Google Scholar 

  63. Pal, S.; Bagchi, B.; Balasubramanian, S. Hydration layer of a cationic micelle, C10TAB: Structure, rigidity, slow reorientation, hydrogen bond lifetime, and solvation dynamics. J. Phys. Chem. B 2005, 109, 12879–12890.

    CAS  Google Scholar 

  64. Smith, D. E.; Dang, L. X. Computer simulations of NaCl association in polarizable water. J. Chem. Phys. 1994, 100, 3757–3766.

    CAS  Google Scholar 

  65. Chai, J. C.; Liu, S. Y.; Yang, X. N. Molecular dynamics simulation of wetting on modified amorphous silica surface. Appl. Surf. Sci. 2009, 255, 9078–9084.

    CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support of the National Science Foundation (No. NSF-CMMI-1761743), the National Aeronautics and Space Administration Early Career Faculty Award (No. 80NSSC17K0520), and the National Institute of General Medical Sciences of the National Institutes of Health (No. DP2GM128446). L. H. L. acknowledges financial support from the National Natural Science Foundation of China (No. 62075111) and the State Key Laboratory of Precision Measurement Technology and Instruments. The authors are grateful to Prof. Brian A. Korgel and Dr. Taizhi Jiang for providing Si particles. They also thank Yaoran Liu, Jingang Li, Kan Yao and Zhihan Chen for useful discussions.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Linhan Lin or Yuebing Zheng.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, H., Kollipara, P.S., Lin, L. et al. Atomistic modeling and rational design of optothermal tweezers for targeted applications. Nano Res. 14, 295–303 (2021). https://doi.org/10.1007/s12274-020-3087-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-3087-z

Keywords

Navigation