Skip to main content
Log in

Oxygen-assisted direct growth of large-domain and high-quality graphene on glass targeting advanced optical filter applications

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Growing high quality graphene films directly on glass by chemical vapor deposition (CVD) meets a growing demand for constructing high-performance electronic and optoelectronic devices. However, the graphene synthesized by prevailing methodologies is normally of polycrystalline nature with high nucleation density and limited domain size, which significantly handicaps its overall properties and device performances. Herein, we report an oxygen-assisted CVD strategy to allow the direct synthesis of 6-inch-scale graphene glass harvesting markedly increased graphene domain size (from 0.2 to 1.8 µm). Significantly, as-produced graphene glass attains record high electrical conductivity (realizing a sheet resistance of 900 Ω·sq−1 at a visible-light transmittance of 92%) amongst the state-of-the-art counterparts, readily serving as transparent electrodes for fabricating high-performance optical filter devices. This work might open a new avenue for the scalable production and application of emerging graphene glass materials with high quality and low cost.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chen, X.; Wu, B.; Liu, Y. Q. Direct preparation of high quality graphene on dielectric substrates. Chem. Soc. Rev. 2016, 45, 2057–2074.

    Article  CAS  Google Scholar 

  2. Kim, K.; Choi, J. Y.; Kim, T.; Cho, S. H.; Chung, H. J. A role for graphene in silicon-based semiconductor devices. Nature 2011, 479, 338–344.

    Article  CAS  Google Scholar 

  3. Kim, H.; Song, I.; Park, C.; Son, M.; Hong, M.; Kim, Y.; Kim, J. S.; Shin, H. J.; Baik, J.; Choi, H. C. Copper-vapor-assisted chemical vapor deposition for high-quality and metal-free single-layer graphene on amorphous SiO2 substrate. ACS Nano 2013, 7, 6575–6582.

    Article  CAS  Google Scholar 

  4. Su, C. Y.; Lu, A. Y.; Wu, C. Y.; Li, Y. T.; Liu, K. K.; Zhang, W. J.; Lin, S. Y.; Juang, Z. Y.; Zhong, Y. L.; Chen, F. R. et al. Direct formation of wafer scale graphene thin layers on insulating substrates by chemical vapor deposition. Nano Lett. 2011, 11, 3612–3616.

    Article  CAS  Google Scholar 

  5. Teng, P. Y.; Lu, C. C.; Akiyama-Hasegawa, K.; Lin, Y. C.; Yeh, C. H.; Suenaga, K.; Chiu, P. W. Remote catalyzation for direct formation of graphene layers on oxides. Nano Lett. 2012, 12, 1379–1384.

    Article  CAS  Google Scholar 

  6. Sun, J. Y.; Chen, Z. L.; Yuan, L.; Chen, Y. B.; Ning, J.; Liu, S. W.; Ma, D. L.; Song, X. J.; Priydarshi, M. K.; Bachmatiuk, A. et al. Direct chemical-vapor-deposition-fabricated, large-scale graphene glass with high carrier mobility and uniformity for touch panel applications. ACS Nano 2016, 10, 11136–11144.

    Article  CAS  Google Scholar 

  7. Chen, Z. L.; Guan, B. L.; Chen, X. D.; Zeng, Q.; Lin, L.; Wang, R. Y.; Priydarshi, M. K.; Sun, J. Y.; Zhang, Z. P.; Wei, T. B. et al. Fast and uniform growth of graphene glass using confined-flow chemical vapor deposition and its unique applications. Nano Res. 2016, 9, 3048–3055.

    Article  CAS  Google Scholar 

  8. Pang, J. B.; Mendes, R. G.; Wrobel, P. S.; Wlodarski, M. D.; Ta, H. Q.; Zhao, L.; Giebeler, L.; Trzebicka, B.; Gemming, T.; Fu, L. et al. Self-terminating confinement approach for large-area uniform monolayer graphene directly over Si/SiOx by chemical vapor deposition. ACS Nano 2017, 11, 1946–1956.

    Article  CAS  Google Scholar 

  9. Chen, X. D.; Chen, Z. L.; Jiang, W. S.; Zhang, C. H.; Sun, J. Y.; Wang, H. H.; Xin, W.; Lin, L.; Priydarshi, M. K.; Yang, H. et al. Fast growth and broad applications of 25-inch uniform graphene glass. Adv. Mater. 2017, 29, 1603428.

    Article  Google Scholar 

  10. Chen, J. Y.; Guo, Y. L.; Jiang, L. L.; Xu, Z. P.; Huang, L. P.; Xue, Y. Z.; Geng, D. C.; Wu, B.; Hu, W. P.; Yu, G. et al. Near-equilibrium chemical vapor deposition of high-quality single-crystal graphene directly on various dielectric substrates. Adv. Mater. 2014, 26, 1348–1353.

    Article  CAS  Google Scholar 

  11. Chen, J. Y.; Wen, Y. G.; Guo, Y. L.; Wu, B.; Huang, L. P.; Xue, Y. Z.; Geng, D. C.; Wang, D.; Yu, G.; Liu, Y. Q. Oxygen-aided synthesis of polycrystalline graphene on silicon dioxide substrates. J. Am. Chem. Soc. 2011, 133, 17548–17551.

    Article  CAS  Google Scholar 

  12. Sun, J. Y.; Gao, T.; Song, X. J.; Zhao, Y. F.; Lin, Y. W.; Wang, H. C.; Ma, D. L.; Chen, Y. B.; Xiang, W. F.; Wang, J. et al. Direct growth of high-quality graphene on high-κ dielectric SrTiO3 substrates. J. Am. Chem. Soc. 2014, 136, 6574–6577.

    Article  CAS  Google Scholar 

  13. Kolmer, M.; Zuzak, R.; Steiner, A. K.; Zajac, L.; Engelund, M.; Godlewski, S.; Szymonski, M.; Amsharov, K. Fluorine-programmed nanozipping to tailored nanographenes on rutile TiO2 surfaces. Science 2019, 363, 57–60.

    Article  CAS  Google Scholar 

  14. Sun, J. Y.; Chen, Y. B.; Priydarshi, M. K.; Chen, Z.; Bachmatiuk, A.; Zou, Z. Y.; Chen, Z. L.; Song, X. J.; Gao, Y. F.; Rümmeli, M. H. et al. Direct chemical vapor deposition-derived graphene glasses targeting wide ranged applications. Nano Lett. 2015, 15, 5846–5854.

    Article  CAS  Google Scholar 

  15. Yazyev, O. V.; Louie, S. G. Electronic transport in polycrystalline graphene. Nat. Mater. 2010, 9, 806–809.

    Article  CAS  Google Scholar 

  16. Huang, P. Y.; Ruiz-Vargas, C. S.; Van Der Zande, A. M.; Whitney, W. S.; Levendorf, M. P.; Kevek, J. W.; Garg, S.; Alden, J. S.; Hustedt, C. J.; Zhu, Y. et al. Grains and grain boundaries in single-layer graphene atomic patchwork quilts. Nature 2011, 469, 389–392.

    Article  CAS  Google Scholar 

  17. Cummings, A. W.; Duong, D. L.; Nguyen, V. L.; Van Tuan, D.; Kotakoski, J.; Vargas, J. E. B.; Lee, Y. H.; Roche, S. Charge transport in polycrystalline graphene: Challenges and opportunities. Adv. Mater. 2014, 26, 5079–5094.

    Article  CAS  Google Scholar 

  18. Wei, S. J.; Ma, L. P.; Chen, M. L.; Liu, Z. B.; Ma, W.; Sun, D. M.; Cheng, H. M.; Ren, W. C. Water-assisted rapid growth of monolayer graphene films on SiO2/Si substrates. Carbon 2019, 148, 241–248.

    Article  CAS  Google Scholar 

  19. Ma, T.; Liu, Z. B.; Wen, J. X.; Gao, Y.; Ren, X. B.; Chen, H. J.; Jin, C. H.; Ma, X. L.; Xu, N. S.; Cheng, H. M. et al. Tailoring the thermal and electrical transport properties of graphene films by grain size engineering. Nat. Commun. 2017, 8, 14886.

    Article  Google Scholar 

  20. Wang, H. P.; Xue, X. D.; Jiang, Q. Q.; Wang, Y. L.; Geng, D. C.; Cai, L.; Wang, L. P.; Xu, Z. P.; Yu, G. Primary nucleation-dominated chemical vapor deposition growth for uniform graphene monolayers on dielectric substrate. J. Am. Chem. Soc. 2019, 141, 11004–11008.

    Article  CAS  Google Scholar 

  21. Choubak, S.; Biron, M.; Levesque, P. L.; Martel, R.; Desjardins, P. No graphene etching in purified hydrogen. J. Phys. Chem. Lett. 2013, 4, 1100–1103.

    Article  CAS  Google Scholar 

  22. Reckinger, N.; Felten, A.; Santos, C. N.; Hackens, B.; Colomer, J. F. The influence of residual oxidizing impurities on the synthesis of graphene by atmospheric pressure chemical vapor deposition. Carbon 2013, 63, 84–91.

    Article  CAS  Google Scholar 

  23. Guo, W.; Wu, B.; Wang, S.; Liu, Y. Q. Controlling fundamental fluctuations for reproducible growth of large single-crystal graphene. ACS Nano 2018, 12, 1778–1784.

    Article  CAS  Google Scholar 

  24. Köhler, C.; Hajnal, Z.; Deák, P.; Frauenheim, T.; Suhai, S. Theoretical investigation of carbon defects and diffusion in α-quartz. Phy. Rev. B 2001, 64, 085333.

    Article  Google Scholar 

  25. Hao, Y. F.; Bharathi, M. S.; Wang, L.; Liu, Y. Y.; Chen, H.; Nie, S.; Wang, X. H.; Chou, H.; Tan, C.; Fallahazad, B. et al. The role of surface oxygen in the growth of large single-crystal graphene on copper. Science 2013, 342, 720–723.

    Article  CAS  Google Scholar 

  26. Xu, X. Z.; Zhang, Z. H.; Qiu, L.; Zhuang, J. N.; Zhang, L.; Wang, H.; Liao, C. N.; Song, H. D.; Qiao, R. X.; Gao, P. et al. Ultrafast growth of single-crystal graphene assisted by a continuous oxygen supply. Nat. Nanotechnol. 2016, 11, 930–935.

    Article  CAS  Google Scholar 

  27. Dai, B. Y.; Fu, L.; Zou, Z. Y.; Wang, M.; Xu, H. T.; Wang, S.; Liu, Z. F. Rational design of a binary metal alloy for chemical vapour deposition growth of uniform single-layer graphene. Nat. Commun. 2011, 2, 522.

    Article  Google Scholar 

  28. Zou, Z. Y.; Fu, L.; Song, X. J.; Zhang, Y. F.; Liu, Z. F. Carbide-forming groups IVB-VIB metals: A new territory in the periodic table for CVD growth of graphene. Nano Lett. 2014, 14, 3832–3839.

    Article  CAS  Google Scholar 

  29. Torrisi, F.; Hasan, T.; Wu, W. P.; Sun, Z. P.; Lombardo, A.; Kulmala, T. S.; Hsieh, G. W.; Jung, S.; Bonaccorso, F.; Paul, P. J. et al. Inkjet-printed graphene electronics. ACS Nano 2012, 6, 2992–3006.

    Article  CAS  Google Scholar 

  30. Bachmatiuk, A.; Zhao, J.; Gorantla, S. M.; Martinez, I. G. G.; Wiedermann, J.; Lee, C.; Eckert, J.; Rummeli, M. H. Low voltage transmission electron microscopy of graphene. Small 2015, 11, 515–542.

    Article  CAS  Google Scholar 

  31. Warner, J. H.; Rümmeli, M. H.; Ge, L.; Gemming, T.; Montanari, B.; Harrison, N. M.; Büchner, B.; Briggs, G. A. D. Structural transformations in graphene studied with high spatial and temporal resolution. Nat. Nanotechnol. 2009, 4, 500–504.

    Article  CAS  Google Scholar 

  32. Wassei, J. K.; Kaner, R. B. Graphene, a promising transparent conductor. Mater. Today 2010, 13, 52–59.

    Article  CAS  Google Scholar 

  33. Chen, Y. B.; Sun, J. Y.; Gao, J. F.; Du, F.; Han, Q.; Nie, Y. F.; Chen, Z. L.; Bachmatiuk, A.; Priydarshi, M. K.; Ma, D. L. et al. Growing uniform graphene disks and films on molten glass for heating devices and cell culture. Adv. Mater. 2015, 27, 7839–7846.

    Article  CAS  Google Scholar 

  34. Cui, L. Z.; Chen, X. D.; Liu, B. Z.; Chen, K.; Chen, Z. L.; Qi, Y.; Xie, H. H.; Zhou, F.; Rümmeli, M. H.; Zhang, Y. F.; Liu, Z. F. Highly conductive nitrogen-doped graphene grown on glass toward electrochromic applications. ACS Appl. Mater. Interfaces 2018, 10, 32622–32630.

    Article  CAS  Google Scholar 

  35. Kim, D. W.; Kim, Y. H.; Jeong, H. S.; Jung, H. T. Direct visualization of large-area graphene domains and boundaries by optical birefringency. Nat. Nanotechnol. 2012, 7, 29–34.

    Article  CAS  Google Scholar 

  36. Wang, H. H.; Liu, B. Z.; Wang, L.; Chen, X. D.; Chen, Z. L.; Qi, Y.; Cui, G.; Xie, H. H.; Zhang, Y. F.; Liu, Z. F. Graphene glass inducing multidomain orientations in cholesteric liquid crystal devices toward wide viewing angles. ACS Nano 2018, 12, 6443–6451.

    Article  CAS  Google Scholar 

  37. Jung, Y. U.; Park, K. W.; Hur, S. T.; Choi, S. W.; Kang, S. J. High-transmittance liquid-crystal displays using graphene conducting layers. Liq. Cryst. 2014, 41, 101–105.

    Article  CAS  Google Scholar 

  38. Jull, E. I. L.; Gleeson, H. F. Tuneable and switchable liquid crystal laser protection system. Appl. Opt. 2017, 56, 8061–8066.

    Article  CAS  Google Scholar 

  39. Yoon, J. H.; Seo, E. J.; Lee, S. J.; Lim, Y. J.; Shin, H. S.; Song, S. M.; Myoung, J. M.; Lee, S. H. Fast switching and luminance-controlled fringe-field switching liquid crystal device for vehicle display. Liq. Cryst. 2019, 46, 1747–1752.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Key Research and Development Program of China (No. 2016YFA0200103), the National Natural Science Foundation of China (Nos. 61527814, 51702225, 51432002, 61474109, 51290272, 51502007, 11474274, 51520105003, and 51672007), National Equipment Program of China (No. ZDYZ2015-1), Beijing Municipal Science and Technology Planning Project (Nos. Z161100002116020 and Z161100002116032), Beijing Natural Science Foundation (No. 4182063), and Natural Science Foundation of Jiangsu Province (No. BK20170336).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jingyu Sun, Yanfeng Zhang or Zhongfan Liu.

Electronic Supplementary Material

12274_2020_3080_MOESM1_ESM.pdf

Oxygen-assisted direct growth of large-domain and high-quality graphene on glass targeting advanced optical filter applications

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, B., Wang, H., Gu, W. et al. Oxygen-assisted direct growth of large-domain and high-quality graphene on glass targeting advanced optical filter applications. Nano Res. 14, 260–267 (2021). https://doi.org/10.1007/s12274-020-3080-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-3080-6

Keywords

Navigation