Skip to main content
Log in

Curcumin inhibits lipopolysaccharide and lipoteichoic acid-induced expression of proinflammatory cytokines and production of PGE2 in the primary bubaline endometrial stromal cells

  • Short Communication
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Infection of the uterus with Gram-positive Trueperella pyogenes and Gram-negative Escherichia coli is a common cause of postpartum endometritis in the cattle and buffalo and the condition is treated with antimicrobial drugs. The presence of drug residues in the milk and development of resistant bacteria necessitate the evaluation of alternate therapies for endometritis. Accordingly, we tested the immunomodulatory effect of curcumin in the bubaline endometrial stromal cells after treatment with the lipoteichoic acid (LTA) of Gram-positive Staphylococcus aureus and lipopolysaccharide (LPS) of Gram-negative E. coli that activate toll-like receptors (TLR-2 and TLR-4, respectively). Confluent primary culture of endometrial stromal cells was treated with LTA (1 µg/mL) and/or LPS (0.1 µg/mL), in the presence or absence of curcumin (30 µM for 24 h). PGE2 was assayed in the supernatant and the relative expression of proinflammatory cytokines (PICs) (IL1B, IL6, IL8 and TNFA) transcripts were quantified using real-time PCR. LTA was not effective in stimulating PGE2 production or upregulating the PIC expression except IL8. LTA+LPS increased PGE2 production and upregulated IL6 and IL8 genes. Curcumin inhibited the basal and LTA+LPS induced production of PGE2 and upregulation of PIC production. It was apparent that LPS, but not LTA, is a potent stimulator of PGE2 from the bubaline endometrial stromal cells. Curcumin downregulated the expression of LPS and/or LTA induced PICs and PGE2 and may be an alternate to antimicrobial drugs for the therapeutic management of endometritis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Availability of data and material

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Azawi OI (2008) Postpartum uterine infection in cattle. Anim Reprod Sci. https://doi.org/10.1016/j.anireprosci.2008.01.010

    Article  PubMed  Google Scholar 

  2. Sheldon IM, Cronin JG, Bromfield JJ (2019) Tolerance and innate immunity shape the development of postpartum uterine disease and the impact of endometritis in dairy cattle. Annu Rev Anim Biosci. https://doi.org/10.1146/annurev-animal-020518-115227

    Article  PubMed  Google Scholar 

  3. Sheldon IM, Dobson H (2004) Postpartum uterine health in cattle. Anim Reprod Sci. https://doi.org/10.1016/j.anireprosci.2004.04.006

    Article  PubMed  Google Scholar 

  4. Schuenemann GM, Nieto I, Bas S et al (2011) Dairy calving management: effect of perineal hygiene scores on metritis. J Dairy Sci 94:744

    Google Scholar 

  5. Gilbert RO, Santos NR (2016) Dynamics of postpartum endometrial cytology and bacteriology and their relationship to fertility in dairy cows. Theriogenology. https://doi.org/10.1016/j.theriogenology.2015.10.045

    Article  PubMed  Google Scholar 

  6. Galvão KN, Bicalho RC, Jeon SJ (2019) Symposium review: the uterine microbiome associated with the development of uterine disease in dairy cows. J Dairy Sci. https://doi.org/10.3168/jds.2019-17106

    Article  PubMed  Google Scholar 

  7. Williams E (2013) Drivers of post-partum uterine disease in dairy cattle. Reprod Domest Anim. https://doi.org/10.1111/rda.12205

    Article  PubMed  Google Scholar 

  8. Takeuchi O, Akira S (2010) Pattern recognition receptors and inflammation. Cell. https://doi.org/10.1016/j.cell.2010.01.022

    Article  PubMed  Google Scholar 

  9. Davies D, Meade KG, Herath S et al (2008) Toll-like receptor and antimicrobial peptide expression in the bovine endometrium. Reprod Biol Endocrinol. https://doi.org/10.1186/1477-7827-6-53

    Article  PubMed  PubMed Central  Google Scholar 

  10. Sheldon IM, Rycroft A, Dogan B et al (2010) Specific strains of Escherichia coli are pathogenic for the endometrium of cattle and cause pelvic inflammatory disease in cattle and mice. PLoS ONE. https://doi.org/10.1371/journal.pone.0009192.s005

    Article  PubMed  PubMed Central  Google Scholar 

  11. El-Zayat SR, Sibaii H, Mannaa FA (2019) Toll-like receptors activation, signaling, and targeting: an overview. Bull Natl Res Cent. https://doi.org/10.1186/s42269-019-0227-2

    Article  Google Scholar 

  12. Patra MK, Kumar H, Nandi S et al (2014) Upregulation of TLR-4 and proinflammatory cytokine transcripts as diagnostic indicator of endometritis in buffaloes. J Appl Anim Res. https://doi.org/10.1080/09712119.2013.842482

    Article  Google Scholar 

  13. Mukherjee S, Karmakar S, Babu SPS (2016) TLR2 and TLR4 mediated host immune responses in major infectious diseases: a review. Braz J Infect Dis. https://doi.org/10.1016/j.bjid.2015.10.011

    Article  PubMed  Google Scholar 

  14. Hoebe K, Janssen EM, Kim SO et al (2003) Upregulation of costimulatory molecules induced by lipopolysaccharide and double-stranded RNA occurs by Trif-dependent and Trif-independent pathways. Nat Immunol. https://doi.org/10.1038/ni1010

    Article  PubMed  Google Scholar 

  15. von Aulock S, Morath S, Hareng L et al (2003) Lipoteichoic acid from Staphylococcus aureus is a potent stimulus for neutrophil recruitment. Immunobiology. https://doi.org/10.1078/0171-2985-00285

    Article  Google Scholar 

  16. Herath S, Fischer DP, Werling D et al (2006) Expression and function of toll-like receptor 4 in the endometrial cells of the uterus. Endocrinology. https://doi.org/10.1210/en.2005-1113

    Article  PubMed  Google Scholar 

  17. Chanrot M, Guo Y, Dalin AM et al (2017) Dose related effects of LPS on endometrial epithelial cell populations from dioestrus cows. Anim Reprod Sci. https://doi.org/10.1016/j.anireprosci.2016.12.002

    Article  PubMed  Google Scholar 

  18. Sheldon IM, Cronin JG, Healey GD et al (2014) Innate immunity and inflammation of the bovine female reproductive tract in health and disease. Reproduction. https://doi.org/10.1530/REP-14-0163

    Article  PubMed  Google Scholar 

  19. Gurunathan S, Choi YJ, Kim JH (2018) Antibacterial efficacy of silver nanoparticles on endometritis caused by Prevotella melaninogenica and Arcanobacterum pyogenes in dairy cattle. Int J Mol Sci. https://doi.org/10.3390/ijms19041210

    Article  PubMed  PubMed Central  Google Scholar 

  20. Goel A, Kunnumakkara AB, Aggarwal BB (2008) Curcumin as “Curecumin”: from kitchen to clinic. Biochem Pharmacol. https://doi.org/10.1016/j.bcp.2007.08.016

    Article  PubMed  Google Scholar 

  21. Alihosseini F, Azarmi S, Ghaffari S et al (2016) Synergic antibacterial effect of curcumin with ampicillin; free drug solutions in comparison with SLN dispersions. Adv Pharm Bull. https://doi.org/10.15171/apb.2016.060

    Article  PubMed  PubMed Central  Google Scholar 

  22. Villena J, Kitazawa H (2013) Modulation of intestinal TLR4-inflammatory signaling pathways by probiotic microorganisms: lessons learned from Lactobacillus jensenii TL2937. Front Immunol. https://doi.org/10.3389/fimmu.2013.00512

    Article  Google Scholar 

  23. Mendi A, Kӧse S, Uçkan D et al (2016) Lactobacillus rhamnosus could inhibit porphyromonas gingivalis derived CXCl8 attenuation. J Appl Oral Sci. https://doi.org/10.1590/1678-775720150145

    Article  PubMed  PubMed Central  Google Scholar 

  24. Llewellyn A, Foey A (2017) Probiotic modulation of innate cell pathogen sensing and signaling events. Nutrients. https://doi.org/10.3390/nu9101156

    Article  PubMed  PubMed Central  Google Scholar 

  25. Dar RR, Ali A, Ahmad SF et al (2019) Immunomodulatory effect of curcumin on lipopolysaccharide- and/or flagellin-induced production of prostaglandin E2 and relative expression of proinflammatory cytokines in the primary bubaline endometrial stromal cells. Reprod Domest Anim. https://doi.org/10.1111/rda.13435

    Article  Google Scholar 

  26. Kasimanickam R, Duffield TF, Foster RA et al (2004) Endometrial cytology and ultrasonography for the detection of subclinical endometritis in postpartum dairy cows. Theriogenology. https://doi.org/10.1016/j.theriogenology.2003.03.001

    Article  PubMed  Google Scholar 

  27. Chethan SG, Singh SK, Nongsiej J et al (2014) IFN-τ acts in a dose-dependent manner on prostaglandin production by buffalo endometrial stromal cells cultured in vitro. Reprod Domest Anim. https://doi.org/10.1111/rda.12287

    Article  PubMed  Google Scholar 

  28. Devi YS, DeVine M, DeKuiper J et al (2015) Inhibition of IL-6 signaling pathway by curcumin in uterine decidual cells. PLoS ONE. https://doi.org/10.1371/journal.pone.0125627

    Article  PubMed  PubMed Central  Google Scholar 

  29. Kim KH, Lee EN, Park JK et al (2012) Curcumin attenuates TNF-α-induced expression of intercellular adhesion molecule-1, vascular cell adhesion molecule-1 and proinflammatory cytokines in human endometriotic stromal cells. Phyther Res. https://doi.org/10.1002/ptr.3694

    Article  Google Scholar 

  30. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods. https://doi.org/10.1006/meth.2001.1262

    Article  PubMed  Google Scholar 

  31. Chang YC, Li PC, Chen BC et al (2006) Lipoteichoic acid-induced nitric oxide synthase expression in RAW 264.7 macrophages is mediated by cyclooxygenase-2, prostaglandin E2, protein kinase A, p38 MAPK, and nuclear factor-κB pathways. Cell Signal. https://doi.org/10.1016/j.cellsig.2005.10.005

    Article  PubMed  Google Scholar 

  32. Huang MT, Lysz T, Ferraro T et al (1991) Inhibitory effects of curcumin on in vitro lipoxygenase and cyclooxygenase activities in mouse epidermis. Cancer Res 51:813–819

    PubMed  Google Scholar 

  33. Surh YJ, Chun KS, Cha HH et al (2001) Molecular mechanisms underlying chemopreventive activities of anti-inflammatory phytochemicals: down-regulation of COX-2 and iNOS through suppression of NF-κB activation. Mutat Res. https://doi.org/10.1016/S0027-5107(01)00183-X

    Article  PubMed  Google Scholar 

  34. Kawamori T, R L, VE S, et al (1999) Chemopreventive effect of curcumin, a naturally occurring anti-inflammatory agent, during the promotion/progression stages of colon cancer. Cancer Res 59:597–601

    CAS  PubMed  Google Scholar 

  35. Turner MD, Nedjai B, Hurst T, Pennington DJ (2014) Cytokines and chemokines: at the crossroads of cell signalling and inflammatory disease. Biochim Biophys Acta. https://doi.org/10.1016/j.bbamcr.2014.05.014

    Article  PubMed  Google Scholar 

  36. Rashidi N, Mirahmadian M, Rezania S et al (2015) Lipopolysaccharide- and lipoteichoic acid-mediated pro-inflammatory cytokine production and modulation of TLR2, TLR4 and MyD88 expression in human endometrial cells. J Reprod Infertil 16:72–81

    PubMed  PubMed Central  Google Scholar 

  37. Standiford TJ, Arenberg DA, Danforth JM et al (1994) Lipoteichoic acid induces secretion of interleukin-8 from human blood monocytes: a cellular and molecular analysis. Infect Immun. https://doi.org/10.1128/iai.62.1.119-125.1994

    Article  PubMed  PubMed Central  Google Scholar 

  38. Keller R, Fischer W, Keist R, Bassetti S (1992) Macrophage response to bacteria: induction of marked secretory and cellular activities by lipoteichoic acids. Infect Immun. https://doi.org/10.1128/iai.60.9.3664-3672.1992

    Article  PubMed  PubMed Central  Google Scholar 

  39. Yang W, Zerbe H, Petzl W et al (2008) Bovine TLR2 and TLR4 properly transduce signals from Staphylococcus aureus and E. coli, but S. aureus fails to both activate NF-κB in mammary epithelial cells and to quickly induce TNFα and interleukin-8 (CXCL8) expression in the udder. Mol Immunol. https://doi.org/10.1016/j.molimm.2007.09.004

    Article  PubMed  Google Scholar 

  40. Fischer C, Drillich M, Odau S et al (2010) Selected pro-inflammatory factor transcripts in bovine endometrial epithelial cells are regulated during the oestrous cycle and elevated in case of subclinical or clinical endometritis. Reprod Fertil Dev. https://doi.org/10.1071/RD09120

    Article  PubMed  Google Scholar 

  41. Ataie-Kachoie P, Pourgholami MH, Richardson DR, Morris DL (2014) Gene of the month: interleukin 6 (IL-6). J Clin Pathol. https://doi.org/10.1136/jclinpath-2014-202493

    Article  PubMed  Google Scholar 

  42. Kant V, Kumar D, Prasad R et al (2017) Combined effect of substance P and curcumin on cutaneous wound healing in diabetic rats. J Surg Res. https://doi.org/10.1016/j.jss.2017.01.011

    Article  PubMed  Google Scholar 

  43. Wang Y, Shan X, Dai Y et al (2015) Curcumin analog L48H37 prevents lipopolysaccharide-induced TLR4 signaling pathway activation and sepsis via targeting MD2. J Pharmacol Exp Ther. https://doi.org/10.1124/jpet.115.222570

    Article  PubMed  PubMed Central  Google Scholar 

  44. Guo YZ, He P, Feng AM (2017) Effect of curcumin on expressions of NF-κBp65, TNF-α and IL-8 in placental tissue of premature birth of infected mice. Asian Pac J Trop Med. https://doi.org/10.1016/j.apjtm.2017.01.004

    Article  PubMed  Google Scholar 

  45. Han Z, Zhang J, Zhang K, Zhao Y (2020) Curcumin inhibits cell viability, migration, and invasion of thymic carcinoma cells via downregulation of microRNA-27a. Phyther Res 34:1629–1637

    Article  CAS  Google Scholar 

  46. Martínez-Castillo M, Villegas-Sepúlveda N, Meraz-Rios MA et al (2018) Curcumin differentially affects cell cycle and cell death in acute and chronic myeloid leukemia cells. Oncol Lett. https://doi.org/10.3892/ol.2018.8112

    Article  PubMed  PubMed Central  Google Scholar 

  47. Chen Q, Gao Q, Chen K et al (2015) Curcumin suppresses migration and invasion of human endometrial carcinoma cells. Oncol Lett. https://doi.org/10.3892/ol.2015.3478

    Article  PubMed  PubMed Central  Google Scholar 

  48. Wang JB, Qi LL, Di ZS, Wu TX (2009) Curcumin induces apoptosis through the mitochondria-mediated apoptotic pathway in HT-29 cells. J Zhejiang Univ Sci B. https://doi.org/10.1631/jzus.B0820238

    Article  PubMed  PubMed Central  Google Scholar 

  49. Walters DK, Muff R, Langsam B et al (2008) Cytotoxic effects of curcumin on osteosarcoma cell lines. Invest New Drugs. https://doi.org/10.1007/s10637-007-9099-7

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The work was supported by National Agricultural Science Fund (NASF) on “Synthetic Endometrium: A novel model to study early embryonic development and uterine health in ruminants” (Project Code: OXX03803) and All India Coordinated Research Project (AICRP) on “Nutritional and physiological approaches for enhancing reproductive performance in cattle and buffalo” (Project code: OXX03079). We thank the Director, ICAR-IVRI for facilitating the work. The first author thanks ICAR for providing Junior Research Fellowship.

Funding

The work was supported by National Agricultural Science Fund (NASF) on “Synthetic Endometrium: A novel model to study early embryonic development and uterine health in ruminants” (Project Code: OXX03803) and All India Coordinated Research Project (AICRP) on “Nutritional and physiological approaches for enhancing reproductive performance in cattle and buffalo” (Project code: OXX03079).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanjay Kumar Singh.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Consent for publication

All authors have approved the manuscript and appropriate institutional permissions have been taken for publication of the manuscript.

Ethical approval

The experimental procedures were in accordance with the ethical guidelines and regulations of the Institute Animal Ethics Committee (IAEC) of ICAR-Indian Veterinary Research Institute, Bareilly India.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ali, A., Dar, R.R., Ahmad, S.F. et al. Curcumin inhibits lipopolysaccharide and lipoteichoic acid-induced expression of proinflammatory cytokines and production of PGE2 in the primary bubaline endometrial stromal cells. Mol Biol Rep 47, 10015–10021 (2020). https://doi.org/10.1007/s11033-020-05961-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-020-05961-y

Keywords

Navigation