Skip to main content
Log in

Microbial fuel cell for oilfield produced water treatment and reuse: Modelling and process optimization

  • Biotechnology
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Oilfield produced water is one of the vast amounts of wastewater that pollute the environment and cause serious problems. In this study, the produced water was treated in a microbial fuel cell (MFC), and response surface methodology and central composite design (RSM/CCD) were used as powerful tools to optimize the process. The results of two separate parameters of sulfonated poly ether ether ketone (SPEEK) as well as nanocomposite composition (CNT/Pt) on the chemical oxygen demand (COD) removal and power generation were discussed. The nanocomposite was analyzed using XRD, SEM, and TEM. Moreover, the degree of sulfonation (DS) was measured by NMR. A quadratic model was utilized to forecast the removal of COD and power generation under distinct circumstances. To obtain the maximum COD removal along with maximum power generation, favorable conditions were achieved by statistical and mathematical techniques. The findings proved that MFC could remove 92% of COD and generate 545 mW/m2 of power density at optimum conditions of DS=80; and CNT/Pt of 14 wt% CNT- 86 wt% Pt.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

\({{\rm{A}}_{{H_E}}}\) :

peak area of the different HE signal

\({{\rm{A}}_{{H_{A,\,{A^\prime},\,B,\,{B^\prime},\,C,\,D}}}}\) :

peak area of the signals corresponding to all the other aromatic hydrogen

ANOVA:

analysis of the variance

AP:

adequate precision

b:

number of electrons exchanged per mole of oxygen

CCD:

central composite design

CE:

coulombic efficiency

COD:

chemical oxygen demand

DF:

degree of freedom

DS:

degree of sulfonation

F:

Faraday’s constant

F-value:

fisher variation ratio

I:

current [amps]

M:

molecular weight of oxygen

MFC:

microbial fuel cell

n:

number of HE per repeat unit

ORR:

oxygen reduction reaction

P:

power density

PEM:

proton exchange membrane

PEEK:

poly ether ether ketone

p-value:

probability value

R:

external resistance [ohm]

R2 :

coefficient of determination

RSM:

response surface methodology

SPEEK:

sulfonated poly ether ether ketone

V:

voltage [volt]

Van :

volume of liquid in the anode compartment

ΔCOD:

change in COD over time, ‘t’

References

  1. J. Hao, S. Mohammadkhani, H. Shahverdi, M. N. Esfahany and A. Shapiro, J. Pet. Sci. Eng., 179, 276 (2019).

    Article  CAS  Google Scholar 

  2. K. Subramanian, T. N. Rao and A. Balakrishnan, Nanofluids and their engineering applications, 1st Ed., CRC Press, Boca Raton (2019).

    Book  Google Scholar 

  3. M. Safari, M. Mohammadi and M. Sedighi, J. Appl. Geophy., 138, 33 (2017).

    Article  Google Scholar 

  4. A. Agi, R. Junin, A. Y. M. Alqatta, A. Gbadamosi, A. Yahya and A. Abbas, Ultrason. Sonochem., 51, 214 (2019).

    Article  CAS  PubMed  Google Scholar 

  5. H. Chang, T. Li, B. Liu, R. D. Vidic, M. Elimelech and J. C. Crittenden, Desalination, 455, 34 (2019).

    Article  CAS  Google Scholar 

  6. S. Munirasu, M. A. Haija and F. Banat, Process Saf Environ. Prot., 100, 183 (2016).

    Article  CAS  Google Scholar 

  7. M. A. Al-Ghouti, M. A. Al-Kaabi, M. Y. Ashfaq and D. A. Da’na, J. Water Process Eng., 28, 222 (2019).

    Article  Google Scholar 

  8. G. Ji, T. Sun, Q. Zhou, X. Sui, S. Chang and P. Li, Ecol. Eng., 18, 459 (2002).

    Article  Google Scholar 

  9. S. Jiménez, M. Micó, M. Arnaldos, F. Medina and S. Contreras, Chemosphere, 192, 186 (2018).

    Article  PubMed  CAS  Google Scholar 

  10. A. Fakhrul-Razi, A. Pendashteh, L. C. Abdullah, D. R. A. Biak, S. S. Madaeni and Z. Z. Abidin, J. Hazard. Mater., 170, 530 (2009).

    Article  CAS  Google Scholar 

  11. M. Wang, M. Wang, D. Chen, Q. Gong, S. Yao, W. Jiang and Y. Chen, J. Environ. Chem. Eng., 7, 102878 (2019).

    Article  CAS  Google Scholar 

  12. H. Fakharian, H. Ganji and A. Naderifar, J. Taiwan Inst. Chem. Eng., 72, 157 (2017).

    Article  CAS  Google Scholar 

  13. P. Jain, M. Sharma, P. Dureja, P. M. Sarma and B. Lal, Chemosphere, 166, 96 (2017).

    Article  CAS  PubMed  Google Scholar 

  14. B. Jia, J. Taiwan Inst. Chem. Eng., 104, 82 (2019).

    Article  CAS  Google Scholar 

  15. J. Zheng, B. Chen, W. Thanyamanta, K. Hawboldt, B. Zhang and B. Liu, Mar. Pollut. Bull., 104, 7 (2016).

    Article  CAS  PubMed  Google Scholar 

  16. C. Wang, Z. Wang, X. Wei and X. Li, J. Water Process Eng., 32, 100972 (2019).

    Article  Google Scholar 

  17. G. Mohanakrishna, R. I. Al-Raoush, I. M. Abu-Reesh and K. Aljaml, Sci. Total Environ., 665, 820 (2019).

    Article  CAS  PubMed  Google Scholar 

  18. H. Li, J. Watson, Y. Zhang, H. Lu and Z. Liu, Bioresour. Technol., 298, 122421 (2019).

    Article  PubMed  CAS  Google Scholar 

  19. E. T. Igunnu and G. Z. Chen, Int. J. Low-Carbon Tech., 9, 157 (2014).

    Article  CAS  Google Scholar 

  20. C. M. Jeong, J. D. R. Choi, Y. Ahn and H. N. Chang, Korean J. Chem. Eng., 25, 535 (2008).

    Article  CAS  Google Scholar 

  21. N.T. Trinh, J.H. Park, S.S. Kim, J.-C. Lee, B.Y Lee and B.-W. Kim, Korean J. Chem. Eng., 27, 546 (2010).

    Article  CAS  Google Scholar 

  22. M. Ghasemi, W. R. W. Daud, A. F. Ismail, Y. Jafari, M. Ismail, A. Mayahi and J. Othman, Desalination, 325, 1 (2013).

    Article  CAS  Google Scholar 

  23. M. Sedighi, S. A. Aljlil, M. D. Alsubei, M. Ghasemi and M. Mohammadi, Alex. Eng. J., 57, 4243 (2018).

    Article  Google Scholar 

  24. Z. Najafgholi and M. Rahimnejad, Korean J. Chem. Eng., 33, 154 (2016).

    Article  CAS  Google Scholar 

  25. J. X. Leong, W. R.W. Daud, M. Ghasemi, K. B. Liew and M. Ismail, Renew. Sust. Energy Rev., 28, 575 (2013).

    Article  CAS  Google Scholar 

  26. M. Ghasemi, S. Shahgaldi, M. Ismail, B. H. Kim, Z. Yaakob and W. R. W. Daud, Int. J. Hydrogen Energy, 36, 13746 (2011).

    Article  CAS  Google Scholar 

  27. L.-M. Zhang, X.-L. Sui, L. Zhao, J.-J. Zhang, D.-M. Gu and Z.-B. Wang, Carbon, 108, 561 (2016).

    Article  CAS  Google Scholar 

  28. M. Ghasemi, W. R.W. Daud, J. Alam, Y. Jafari, M. Sedighi, S.A. Aljlil and H. Ilbeygi, Int. J. Hydrogen Energy, 41, 4862 (2016).

    Article  CAS  Google Scholar 

  29. M. Ghasemi, M. Ismail, S. K. Kamarudin, K. Saeedfar, W. R. W. Daud, S. H. Hassan, L. Y. Heng, J. Alam and S.-E. Oh, Appl. Energy, 102, 1050 (2013).

    Article  CAS  Google Scholar 

  30. S. Hisham, F. A. Khan, S.A. Aljlil and M. Ghasemi, SN Appl. Sci., 1, 646 (2019).

    Article  Google Scholar 

  31. H. Ilbeygi, A. Mayahi, A. Ismail, M. Nasef, J. Jaafar, M. Ghasemi, T. Matsuura and S. Zaidi, J. Taiwan Inst. Chem. Eng., 45, 2265 (2014).

    Article  CAS  Google Scholar 

  32. D. C. Montgomery, Design and analysis of experiments, Wiley, United States (2017).

    Google Scholar 

  33. M. Sedighi, M. Mohammadi, M. Sedighi and M. Ghasemi, Energy Fuels, 32, 7412 (2018).

    Article  CAS  Google Scholar 

  34. M. Mohammadi, M. Sedighi and V. Alimohammadi, Int. J. Nano Dimens, 10, 195 (2019).

    CAS  Google Scholar 

  35. M. Nouri, M. Sedighi, M. Ghasemi and M. Mohammadi, Korean J. Chem. Eng., 30, 1700 (2013).

    Article  CAS  Google Scholar 

  36. M. Mohammadi, M. Dadvar and B. Dabir, J. Mol. Liq., 238, 326 (2017).

    Article  CAS  Google Scholar 

  37. F. Momtazan, A. Vafaei, M. Ghaedi, A. M. Ghaedi, D. Emadzadeh, W.-J. Lau and M. M. Baneshi, Korean J. Chem. Eng., 35, 1108 (2018).

    Article  CAS  Google Scholar 

  38. M. Ghasemi, A.M. Nassef, M. Al-Dhaifallah and H. Rezk, Int. J. Energy Res, 1, 1 (2020).

    Google Scholar 

  39. M. Ghasemi, W. R. W. Daud, S. H. Hassan, T. Jafary, M. Rahimnejad, A. Ahmad and M. H. Yazdi, Int. J. Hydrogen Energy, 41, 4872 (2016).

    Article  CAS  Google Scholar 

  40. Y. Mohan and D. Das, Int. J. Hydrogen Energy, 34, 7542 (2009).

    Article  CAS  Google Scholar 

  41. B. Hou, J. Sun and Y.-y. Hu, Bioresour. Technol., 102, 4433 (2011).

    Article  CAS  PubMed  Google Scholar 

  42. N. Garino, A. Sacco, M. Castellino, J. A. Muñoz-Tabares, A. Chiodoni, V. Agostino, V. Margaria, M. Gerosa, G. Massaglia and M. Quaglio, ACS Appl. Mater. Interfaces, 8, 4633 (2016).

    Article  CAS  PubMed  Google Scholar 

  43. A. Mehdinia, E. Ziaei and A. Jabbari, Electrochim. Acta, 130, 512 (2014).

    Article  CAS  Google Scholar 

  44. A. Kongkanand and M.F. Mathias, J. Phys. Chem. Lett, 7, 1127 (2016).

    Article  CAS  PubMed  Google Scholar 

  45. H. S. Ahn and T. D. Tilley, Adv. Fund. Mater., 23, 227 (2013).

    Article  CAS  Google Scholar 

  46. J. An, H. Jeon, J. Lee and I. S. Chang, Environ. Sci. Technol., 45, 5441 (2011).

    Article  CAS  PubMed  Google Scholar 

  47. B. Erable, D. Féron and A. Bergel, ChemSusChem, 5, 975 (2012).

    Article  CAS  PubMed  Google Scholar 

  48. T. Chen and L. Dai, Mater. Today, 16, 272 (2013).

    Article  CAS  Google Scholar 

  49. A. H. Khan, S. Ghosh, B. Pradhan, A. Dalui, L. K. Shrestha, S. Acharya and K. Ariga, Bull. Chem. Soc. Jpn., 90, 627 (2017).

    Article  Google Scholar 

  50. C. Baldizzone, S. Mezzavilla, H. W. Carvalho, J. C. Meier, A. K. Schuppert, M. Heggen, C. Galeano, J. D. Grunwaldt, F. Schüth and K. J. Mayrhofer, Angew. Chem. Int. Ed., 53, 14250 (2014).

    Article  CAS  Google Scholar 

  51. M. Sedighi and M. Mohammadi, J. CO2 Util., 35, 236 (2020).

    Article  CAS  Google Scholar 

  52. M. Gummalla, S. C. Ball, D. A. Condit, S. Rasouli, K. Yu, P. J. Ferreira, D. J. Myers and Z. Yang, Catalysts, 5, 926 (2015).

    Article  CAS  Google Scholar 

  53. H. Yano, M. Watanabe, A. Iiyama and H. Uchida, Nano Energy, 29, 323 (2016).

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The authors would like to express their sincere appreciation to the Chemical Engineering Section at the Faculty of Engineering of the Sohar University of Oman for their kind supports.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mehdi Sedighi or Mostafa Ghasemi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohammadi, M., Sedighi, M., Natarajan, R. et al. Microbial fuel cell for oilfield produced water treatment and reuse: Modelling and process optimization. Korean J. Chem. Eng. 38, 72–80 (2021). https://doi.org/10.1007/s11814-020-0674-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-020-0674-3

Keywords

Navigation