Skip to main content

Advertisement

Log in

Potential of Magnetic Nanoferrites in Removal of Heavy Metals from Contaminated Water: Mini Review

  • Review
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

Water, being an essential element for the survival of living organisms, requires to be free from contaminants and pollutants. These contaminants are generally of organic, biological, microbial or inorganic nature, and all these contaminants pose severe hazards to human health upon consumption through the water. The high concentration of heavy metal ions is being found in water resources owing to the ever-increasing anthropogenic as well as industrial activities. Some of the heavy metals are crucial for the development and functioning of the human body, whereas some are toxic. In any case, consumption of any heavy metal beyond the accepted guideline values can lead to the rise of health complications. Researchers are effectively using magnetic nanoferrites as nanoadsorbents for water treatment. Specially designed magnetic nanoferrites have been found to provide as high as 99% elimination of selective heavy metal ions from the contaminated water. The present study reviews the recent researches conducted in the last two decades in the area of health hazards posed by prolonged consumption of heavy metal ions through consumable water and about using magnetic nanoferrites, their composites and derivatives for efficient removal of different kinds of heavy metal ions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Institute of Medicine (U.S.): Dietary reference intakes for water, potassium, sodium, chloride and sulfate. The National Academies Press, Washington (2008)

    Google Scholar 

  2. Manz, F., Wentz, A., Sichert-Hellert, W.: The most essential nutrient: defining the adequate intake of water. J. Pediatr. 141, 587–592 (2002). https://doi.org/10.1067/mpd.2002.128031

    Article  Google Scholar 

  3. Jéquier, E., Constant, F.: Water as an essential nutrient: the physiological basis of hydration. Eur. J. Clin. Nutr. 64, 115–123 (2010). https://doi.org/10.1038/ejcn.2009.111

    Article  Google Scholar 

  4. Houghton, J.: Global warming: the complete briefing. Cambridge University Press (2009)

  5. Pendergast, M.M., Hoek, E.M.V.: A review of water treatment membrane nanotechnologies. Energy Environ. Sci. 4, 1946–1971 (2011). https://doi.org/10.1039/c0ee00541j

    Article  Google Scholar 

  6. Bhatnagar, A., Sillanpää, M.: Utilization of agro-industrial and municipal waste materials as potential adsorbents for water treatment-a review. Chem. Eng. J. 157, 277–296 (2010). https://doi.org/10.1016/j.cej.2010.01.007

    Article  Google Scholar 

  7. Li, J., Chen, J., Chen, S.: Supercritical water treatment of heavy metal and arsenic metalloid-bioaccumulating-biomass. Ecotoxicol. Environ. Saf. 157, 102–110 (2018). https://doi.org/10.1016/j.ecoenv.2018.03.069

    Article  Google Scholar 

  8. Hawkes, S.J.: What is a “heavy metal”? J. Chem. Educ. 74, 1369–1374 (1997)

    Article  Google Scholar 

  9. Rahimzadeh, M.R., Rahimzadeh, M.R., Kazemi, S., Moghadamnia, A.A.: Cadmium toxicity and treatment: an update. Casp. J. Intern. Med. 8, 135–145 (2017). https://doi.org/10.22088/cjim.8.3.135

    Article  Google Scholar 

  10. Sinha, D., Prasad, P.: Health effects inflicted by chronic low-level arsenic contamination in groundwater: a global public health challenge. J. Appl. Toxicol. 40, 87–131 (2020). https://doi.org/10.1002/jat.3823

    Article  Google Scholar 

  11. Jabłońska-Czapla, M.: Arsenic, antimony, chromium, and thallium speciation in water and sediment samples with the LC-ICP-MS technique. Int. J. Anal. Chem. 2015, 1 (2015). https://doi.org/10.1155/2015/171478

    Article  Google Scholar 

  12. Chubaka, C.E., Whiley, H., Edwards, J.W., Ross, K.E.: Lead, zinc, copper, and cadmium content of water from South Australian rainwater tanks. Int. J. Environ. Res. Public Health. 15, 1–12 (2018). https://doi.org/10.3390/ijerph15071551

    Article  Google Scholar 

  13. Das Gupta, A.: Implication of environmental flows in river basin management. Phys. Chem. Earth. 33, 298–303 (2008). https://doi.org/10.1016/j.pce.2008.02.004

    Article  ADS  Google Scholar 

  14. He, T., Feng, X., Guo, Y., Qiu, G., Li, Z., Liang, L., Lu, J.: The impact of eutrophication on the biogeochemical cycling of mercury species in a reservoir: a case study from Hongfeng reservoir, Guizhou. China. Environ. Pollut. 154, 56–67 (2008). https://doi.org/10.1016/j.envpol.2007.11.013

    Article  Google Scholar 

  15. Ajmal, M., Rao, R.A.K., Ahmad, R., Ahmad, J.: Adsorption studies on citrus Reticulata (fruit peel of orange): removal and recovery of Ni(II) from electroplating wastewater. J. Hazard. Mater. 79, 117–131 (2000). https://doi.org/10.1016/S0304-3894(00)00234-X

    Article  Google Scholar 

  16. Mandour, R.A., Azab, Y.A.: The prospective toxic effects of some heavy metals overload in surface drinking water of Dakahlia Governorate, Egypt. Int. J. Occup. Environ. Med. 2, 245–253 (2011)

    Google Scholar 

  17. Wang, G., Yinglan, A., Jiang, H., Fu, Q., Zheng, B.: Modeling the source contribution of heavy metals in surficial sediment and analysis of their historical changes in the vertical sediments of a drinking water reservoir. J. Hydrol. 520, 37–51 (2015). https://doi.org/10.1016/j.jhydrol.2014.11.034

    Article  ADS  Google Scholar 

  18. Alam, I.A., Sadiq, M.: Metal contamination of drinking water from corrosion of distribution pipes. Environ. Pollut. 57, 167–178 (1989). https://doi.org/10.1016/0269-7491(89)90008-0

    Article  Google Scholar 

  19. Chowdhury, S., Mazumder, M.A.J., Al-Attas, O., Husain, T.: Heavy metals in drinking water: occurrences, implications, and future needs in developing countries. Sci. Total Environ. 569–570, 476–488 (2016). https://doi.org/10.1016/j.scitotenv.2016.06.166

    Article  ADS  Google Scholar 

  20. Buschmann, J., Berg, M., Stengel, C., Winkel, L., Sampson, M.L., Trang, P.T.K., Viet, P.H.: Contamination of drinking water resources in the Mekong delta floodplains: arsenic and other trace metals pose serious health risks to population. Environ. Int. 34, 756–764 (2008). https://doi.org/10.1016/j.envint.2007.12.025

    Article  Google Scholar 

  21. World Health Organization (WHO): Chapter 12: Chemical fact sheets. (2017)

  22. Asaduzzaman, K., Khandaker, M.U., Binti Baharudin, N.A., Amin, Y.B.M., Farook, M.S., Bradley, D.A., Mahmoud, O.: Heavy metals in human teeth dentine: a bio-indicator of metals exposure and environmental pollution. Chemosphere. 176, 221–230 (2017). https://doi.org/10.1016/j.chemosphere.2017.02.114

    Article  ADS  Google Scholar 

  23. El-Kady, A.A., Abdel-Wahhab, M.A.: Occurrence of trace metals in foodstuffs and their health impact. Trends Food Sci. Technol. 75, 36–45 (2018). https://doi.org/10.1016/j.tifs.2018.03.001

    Article  Google Scholar 

  24. ATSDR (Agency for Toxic Substances and Disease Registry): Toxicological profiles. (2015)

  25. NRC (National Research Council): Classifying drinking water contaminants for regulatory consideration. The National Academies Press, Washington (2001)

    Google Scholar 

  26. Fu, H.Z., Wang, M.H., Ho, Y.S.: Mapping of drinking water research: a bibliometric analysis of research output during 1992-2011. Sci. Total Environ. 443, 757–765 (2013). https://doi.org/10.1016/j.scitotenv.2012.11.061

    Article  ADS  Google Scholar 

  27. Rosado, J.L., Ronquillo, D., Kordas, K., Rojas, O., Alatorre, J., Lopez, P., Garcia-Vargas, G., del Carmen Caamaño, M., Cebrián, M.E., Stoltzfus, R.J.: Arsenic exposure and cognitive performance in Mexican schoolchildren. Environ. Health Perspect. 115, 1371–1375 (2007). https://doi.org/10.1289/ehp.9961

    Article  Google Scholar 

  28. Canfield, R.L., Henderson, C.R., Cory-Slechta, D.A., Cox, C., Jusko, T.A., Lanphear, B.P.: Intellectual impairment in children with blood lead concentrations below 10 μg per deciliter. N. Engl. J. Med. 348, 1517–1526 (2003). https://doi.org/10.1097/dbp.0b013e31825e22fb

    Article  Google Scholar 

  29. Smith, A.H., Hopenhayn-Rich, C., Bates, M.N., Goeden, H.M., Hertz-Picciotto, I., Duggan, H.M., Wood, R., Kosnett, M.J., Smith, M.T.: Cancer risks from arsenic in drinking water. Environ. Health Perspect. 97, 259–267 (1992). https://doi.org/10.1289/ehp.9297259

    Article  Google Scholar 

  30. Linos, A., Petralias, A., Christophi, C.A., Christoforidou, E., Kouroutou, P., Stoltidis, M., Veloudaki, A., Tzala, E., Makris, K.C., Karagas, M.R.: Oral ingestion of hexavalent chromium through drinking water and cancer mortality in an industrial area of Greece - an ecological study. Environ. Heal. A Glob. Access Sci. Source. 10, 1–8 (2011). https://doi.org/10.1186/1476-069X-10-50

    Article  Google Scholar 

  31. Ali, F., Kazi, T.G., Afridi, H.I., Baig, J.A.: Exposure of cadmium via smoking and drinking water on zinc levels of biological samples of malnutrition pregnant women: a prospective cohort study. Environ. Toxicol. Pharmacol. 63, 48–54 (2018). https://doi.org/10.1016/j.etap.2018.08.013

    Article  Google Scholar 

  32. Von Ehrenstein, O.S., Guha Mazumder, D.N., Hira-Smith, M., Ghosh, N., Yuan, Y., Windham, G., Ghosh, A., Haque, R., Lahiri, S., Kalman, D., Das, S., Smith, A.H.: Pregnancy outcomes, infant mortality, and arsenic in drinking water in West Bengal. India. Am. J. Epidemiol. 163, 662–669 (2006). https://doi.org/10.1093/aje/kwj089

    Article  Google Scholar 

  33. McLachlan, D.R.C., Alexandrov, P.N., Walsh, W.J., Pogue, A.I., Percy, M.E., Kruck, T.P.A., Fang, Z., Scharfman, N., Jaber, V., Zhao, Y., Li, W., Lukiw, W.J.: Aluminum in neurological disease - a 36 year multicenter study. J. Alzheimer’s Dis. Park. 8, 6–10 (2018). https://doi.org/10.4172/2161-0460.1000457

    Article  Google Scholar 

  34. Mitrakas, M., Mantha, Z., Tzollas, N., Stylianou, S., Katsoyiannis, I., Zouboulis, A.: Removal of antimony species, Sb(III)/Sb(V), from water by using iron coagulants. Water. 10, 1–11 (2018). https://doi.org/10.3390/w10101328

    Article  Google Scholar 

  35. Goswami, R., Kumar, M., Biyani, N., Shea, P.J.: Arsenic exposure and perception of health risk due to groundwater contamination in Majuli (river island), Assam, India. Environ. Geochem. Health. 42, 443–460 (2020). https://doi.org/10.1007/s10653-019-00373-9

    Article  Google Scholar 

  36. Kamlade, P.: Barium exposure of an invasive breast cancer cluster investigation – quantitative drinking water chemistry for carcinogen search. H2Open J. 2, 168–183 (2019). https://doi.org/10.2166/h2oj.2019.016

    Article  Google Scholar 

  37. Bawaskar, H.S., Bawaskar, P.H., Bawaskar, P.H.: Chronic renal failure associated with heavy metal contamination of drinking water: a clinical report from a small village in Maharashtra. Clin. Toxicol. 48, 768 (2010). https://doi.org/10.3109/15563650.2010.497763

    Article  Google Scholar 

  38. Burke, F., Hamza, S., Naseem, S., Nawaz-ul-Huda, S., Azam, M., Khan, I.: Impact of cadmium polluted groundwater on human health: winder. Balochistan. SAGE Open. 6, 215824401663440 (2016). https://doi.org/10.1177/2158244016634409

    Article  Google Scholar 

  39. Suh, M., Wikoff, D., Lipworth, L., Goodman, M., Fitch, S., Mittal, L., Ring, C., Proctor, D.: Hexavalent chromium and stomach cancer: a systematic review and meta-analysis. Crit. Rev. Toxicol. 49, 140–159 (2019). https://doi.org/10.1080/10408444.2019.1578730

    Article  Google Scholar 

  40. Ray, S., Kanti Ray, M.: Bioremediation of heavy metal toxicity-with special reference to chromium. Al Ameen J. Med. Sci. 2, 57–63 (2009)

    Google Scholar 

  41. Sheikh, I.: Cobalt poisoning: a comprehensive review of the literature. J. Med. Toxicol. Clin. Forensic Med. 2(1–6), 10.21767/2471–109641.100017 (2016)

    Google Scholar 

  42. Taylor, A.A., Tsuji, J.S., Garry, M.R., McArdle, M.E., Goodfellow, W.L., Adams, W.J., Menzie, C.A.: Critical review of exposure and effects: implications for setting regulatory health criteria for ingested copper. Environ. Manag. 65, 131–159 (2020). https://doi.org/10.1007/s00267-019-01234-y

    Article  Google Scholar 

  43. Kumar, V., Bharti, P.K., Talwar, M., Tyagi, A.K., Kumar, P.: Studies on high iron content in water resources of Moradabad district (UP), India. Water Sci. 31, 44–51 (2017). https://doi.org/10.1016/j.wsj.2017.02.003

    Article  Google Scholar 

  44. Miller-Schulze, J.P., Ishikawa, C., Foran, J.A.: Assessing lead-contaminated drinking water in a large academic institution: a case study. J. Water Health. 17, 728–736 (2019). https://doi.org/10.2166/wh.2019.025

    Article  Google Scholar 

  45. Khan, K., Factor-Litvak, P., Wasserman, G.A., Liu, X., Ahmed, E., Parvez, F., Slavkovich, V., Levy, D., Mey, J., van Geen, A., Graziano, J.H.: Manganese exposure from drinking water and children’s classroom behavior in Bangladesh. Environ. Health Perspect. 119, 1501–1506 (2011). https://doi.org/10.1289/ehp.1003397

    Article  Google Scholar 

  46. Ghosh, G.C., Khan, M.J.H., Chakraborty, T.K., Zaman, S., Kabir, A.H.M.E., Tanaka, H.: Human health risk assessment of elevated and variable iron and manganese intake with arsenic-safe groundwater in Jashore, Bangladesh. Sci. Rep. 10, 1–9 (2020). https://doi.org/10.1038/s41598-020-62187-5

    Article  Google Scholar 

  47. Tariq, M.: Toxicity of mercury in human : a review. J. Clin. Toxicol. 9, 1–4 (2019)

    Google Scholar 

  48. Raj, D., Maiti, S.K.: Sources, toxicity, and remediation of mercury: an essence review. Environ. Monit. Assess. 191, 566 (2019). https://doi.org/10.1007/s10661-019-7743-2

    Article  Google Scholar 

  49. Das, K.K., Reddy, R.C., Bagoji, I.B., Das, S., Bagali, S., Mullur, L., Khodnapur, J.P., Biradar, M.S.: Primary concept of nickel toxicity – an overview. J. Basic Clin. Physiol. Pharmacol. 30, 1–12 (2018). https://doi.org/10.1515/jbcpp-2017-0171

    Article  Google Scholar 

  50. Fewtrell, L., Majuru, B., Hunter, P.R.: A re-assessment of the safety of silver in household water treatment: rapid systematic review of mammalian in vivo genotoxicity studies. Environ. Heal. A Glob. Access Sci. Source. 16, 1–9 (2017). https://doi.org/10.1186/s12940-017-0279-4

    Article  Google Scholar 

  51. Aktepe, N., Kocyigit, A., Yukselten, Y., Taskin, A., Keskin, C., Celik, H.: Increased DNA damage and oxidative stress among silver jewelry workers. Biol. Trace Elem. Res. 164, 185–191 (2015). https://doi.org/10.1007/s12011-014-0224-0

    Article  Google Scholar 

  52. Sher, F., Malik, A., Liu, H.: Industrial polymer effluent treatment by chemical coagulation and flocculation. J. Environ. Chem. Eng. 1, 684–689 (2013). https://doi.org/10.1016/j.jece.2013.07.003

    Article  Google Scholar 

  53. Sonune, A., Ghate, R.: Developments in wastewater treatment methods. Desalination. 167, 55–63 (2004). https://doi.org/10.1016/j.desal.2004.06.113

    Article  Google Scholar 

  54. Matlock, M.M., Howerton, B.S., Atwood, D.A.: Chemical precipitation of heavy metals from acid mine drainage. Water Res. 36, 4757–4764 (2002). https://doi.org/10.1016/S0043-1354(02)00149-5

    Article  Google Scholar 

  55. Chan, Y.J., Chong, M.F., Law, C.L., Hassell, D.G.: A review on anaerobic-aerobic treatment of industrial and municipal wastewater. Chem. Eng. J. 155, 1–18 (2009). https://doi.org/10.1016/j.cej.2009.06.041

    Article  Google Scholar 

  56. QU, J.: Research progress of novel adsorption processes in water purification: a review. J. Environ. Sci. 20, 1–13 (2008). https://doi.org/10.1016/S1001-0742(08)60001-7

    Article  Google Scholar 

  57. Carlos, L., Garcia Einschlag, F.S., Monica, C., Mártire, D.O.: Applications of magnetite nanoparticles for heavy metal removal from wastewater. Waste Water - Treat. Technol. Recent Anal. Dev. (2013). https://doi.org/10.5772/54608

  58. Abdelbasir, S.M., Shalan, A.E.: An overview of nanomaterials for industrial wastewater treatment. Korean J. Chem. Eng. 36, 1209–1225 (2019). https://doi.org/10.1007/s11814-019-0306-y

    Article  Google Scholar 

  59. Mathur, P., Thakur, A., Singh, M.: A study of nano-structured Zn-Mn soft spinel ferrites by the citrate precursor method. Phys. Scr. 77, 045701 (2008). https://doi.org/10.1088/0031-8949/77/4/045701

    Article  ADS  Google Scholar 

  60. Kefeni, K.K., Mamba, B.B., Msagati, T.A.M.: Application of spinel ferrite nanoparticles in water and wastewater treatment: a review. Sep. Purif. Technol. 188, 399–422 (2017). https://doi.org/10.1016/j.seppur.2017.07.015

    Article  Google Scholar 

  61. Gehrke, I., Geiser, A., Somborn-Schulz, A.: Innovations in nanotechnology for water treatment. Nanotechnol. Sci. Appl. 8, 1–17 (2015). https://doi.org/10.2147/NSA.S43773

    Article  Google Scholar 

  62. Thakur, P., Thakur, A., Singh, M.: Comparative study of dielectric behavior of Mn0.4Zn0.6Fe2O4 nanoferrite by citrate precursor method. Int. J. Mod. Phys. B. 22, 2537–2544 (2008). https://doi.org/10.1142/S0217979208039708

    Article  ADS  Google Scholar 

  63. Pathania, A., Bhardwaj, S., Thakur, S.S., Mattei, J.L., Queffelec, P., Panina, L.V., Thakur, P., Thakur, A.: Investigation of structural, optical, magnetic and electrical properties of tungsten doped Ni–Zn nano-ferrites. Phys. B Condens. Matter. 531, 45–50 (2018). https://doi.org/10.1016/j.physb.2017.12.008

    Article  ADS  Google Scholar 

  64. Sharma, V., Mathur, P., Sharma, N., Sharma, A., Thakur, A., Singh, M.: A study of low temperature sintered MgMn nano-ferrites. Int. J. Mod. Phys. B. 23, 125–132 (2009). https://doi.org/10.1142/S0217979209049528

    Article  ADS  Google Scholar 

  65. Glezer, A.M.: Structural Classification of Nanomaterials. Russ. Metall. 2011, 263–269 (2011). https://doi.org/10.1134/S0036029511040057

    Article  ADS  Google Scholar 

  66. Hazra, S., Ghosh, N.N.: Preparation of nanoferrites and their applications. J. Nanosci. Nanotechnol. 14, 1983–2000 (2014). https://doi.org/10.1166/jnn.2014.8745

    Article  Google Scholar 

  67. MATHUR, P., THAKUR, A., SINGH, M.: Processing of nano-crystallite spinel ferrite prepared by co-precipitation method. Int. J. Mod. Phys. B. 23, 365–374 (2009). https://doi.org/10.1142/s0217979209049668

    Article  ADS  Google Scholar 

  68. Thakur, P., Chahar, D., Taneja, S., Bhalla, N., Thakur, A.: A review on MnZn ferrites: synthesis, characterization and applications. Ceram. Int. 46, 15740–15763 (2020). https://doi.org/10.1016/j.ceramint.2020.03.287

    Article  Google Scholar 

  69. Thakur, A., Thakur, P., Hsu, J.H.: Magnetic behaviour of Ni0.4 Zn0.6 Co0.1 Fe1.9 O4 spinel nano-ferrite. J. Appl. Phys. 111, 2012–2015 (2012). https://doi.org/10.1063/1.3670606

    Article  Google Scholar 

  70. Kefeni, K.K., Msagati, T.A.M., Mamba, B.B.: Ferrite nanoparticles: synthesis, characterisation and applications in electronic device. Mater. Sci. Eng. B Solid-State Mater. Adv. Technol. 215, 37–55 (2017). https://doi.org/10.1016/j.mseb.2016.11.002

    Article  Google Scholar 

  71. Mathew, D.S., Juang, R.S.: An overview of the structure and magnetism of spinel ferrite nanoparticles and their synthesis in microemulsions. Chem. Eng. J. 129, 51–65 (2007). https://doi.org/10.1016/j.cej.2006.11.001

    Article  Google Scholar 

  72. Yadav, R.S., Havlica, J., Masilko, J., Kalina, L., Wasserbauer, J., Hajdúchová, M., Enev, V., Kuřitka, I., Kožáková, Z.: Impact of Nd3+ in CoFe2O4 spinel ferrite nanoparticles on cation distribution, structural and magnetic properties. J. Magn. Magn. Mater. 399, 109–117 (2016). https://doi.org/10.1016/j.jmmm.2015.09.055

    Article  ADS  Google Scholar 

  73. Rana, K., Thakur, P., Sharma, P., Tomar, M., Gupta, V., Thakur, A.: Improved structural and magnetic properties of cobalt nanoferrites: influence of sintering temperature. Ceram. Int. 41, 4492–4497 (2015). https://doi.org/10.1016/j.ceramint.2014.11.143

    Article  Google Scholar 

  74. Milam-Guerrero, J.A., Neer, A.J., Melot, B.C.: Crystal chemistry and competing magnetic exchange interactions in oxide garnets and spinels. J. Solid State Chem. 274, 1–9 (2019). https://doi.org/10.1016/j.jssc.2019.02.007

    Article  ADS  Google Scholar 

  75. Anjum, M., Miandad, R., Waqas, M., Gehany, F., Barakat, M.A.: Remediation of wastewater using various nano-materials. Arab. J. Chem. 12, 4897–4919 (2019). https://doi.org/10.1016/j.arabjc.2016.10.004

    Article  Google Scholar 

  76. Gutierrez, A.M., Dziubla, T.D., Hilt, J.Z.: Recent advances on iron oxide magnetic nanoparticles as sorbents of organic pollutants in water and wastewater treatment. Rev. Environ. Health. 32, 111–117 (2017). https://doi.org/10.1515/reveh-2016-0063

    Article  Google Scholar 

  77. Kumari, P., Alam, M., Siddiqi, W.A.: Usage of nanoparticles as adsorbents for waste water treatment: an emerging trend. Sustain. Mater. Technol. 22, e00128 (2019). https://doi.org/10.1016/j.susmat.2019.e00128

    Article  Google Scholar 

  78. Lata, S., Samadder, S.R.: Removal of arsenic from water using nano adsorbents and challenges: a review. J. Environ. Manag. 166, 387–406 (2016). https://doi.org/10.1016/j.jenvman.2015.10.039

    Article  Google Scholar 

  79. Tu, Y.J., You, C.F., Chang, C.K., Chan, T.S., Li, S.H.: XANES evidence of molybdenum adsorption onto novel fabricated nano-magnetic CuFe2O4. Chem. Eng. J. 244, 343–349 (2014). https://doi.org/10.1016/j.cej.2014.01.084

    Article  Google Scholar 

  80. Casbeer, E., Sharma, V.K., Li, X.Z.: Synthesis and photocatalytic activity of ferrites under visible light: a review. Sep. Purif. Technol. 87, 1–14 (2012). https://doi.org/10.1016/j.seppur.2011.11.034

    Article  Google Scholar 

  81. Rana, K., Thakur, P., Tomar, M., Gupta, V., Thakur, A.: Structural and magnetic properties of Ni-Zn doped BaM nanocomposite via citrate precursor. AIP Conf. Proc. 1731, 1–4 (2016). https://doi.org/10.1063/1.4947806

    Article  Google Scholar 

  82. Kunduru, K.R., Nazarkovsky, M., Farah, S., Pawar, R.P., Basu, A., Domb, A.J.: In: Water Purification. pp. 33–74. Elsevier (2017)

  83. Khulbe, K.C., Matsuura, T.: Removal of heavy metals and pollutants by membrane adsorption techniques. Appl Water Sci. 8, 1–30 (2018). https://doi.org/10.1007/s13201-018-0661-6

    Article  Google Scholar 

  84. Renu, Agarwal, M., Singh, K.: Heavy metal removal from wastewater using various adsorbents: a review. J. Water Reuse Desalin. 7, 387–419 (2017). https://doi.org/10.2166/wrd.2016.104

    Article  Google Scholar 

  85. Zhang, M., Huang, G., Huang, J., Zhong, L., Chen, W.: Magnetic solid phase extraction with octahedral structured Fe3O4@SiO2@polydimethylsiloxane magnetic nanoparticles as the sorbent for determining benzene, toluene, ethylbenzene and xylenes in water samples. RSC Adv. 7, 41862–41868 (2017). https://doi.org/10.1039/c7ra07733e

    Article  Google Scholar 

  86. Xie, J., Liu, T., Song, G., Hu, Y., Deng, C.: Simultaneous analysis of organophosphorus pesticides in water by magnetic solid-phase extraction coupled with GC-MS. Chromatographia. 76, 535–540 (2013). https://doi.org/10.1007/s10337-013-2408-8

    Article  Google Scholar 

  87. Tolmacheva, V.V., Apyari, V.V., Kochuk, E.V., Dmitrienko, S.G.: Magnetic adsorbents based on iron oxide nanoparticles for the extraction and preconcentration of organic compounds. J. Anal. Chem. 71, 321–338 (2016). https://doi.org/10.1134/S1061934816040079

    Article  Google Scholar 

  88. Thatai, S., Khurana, P., Boken, J., Prasad, S., Kumar, D.: Nanoparticles and core-shell nanocomposite based new generation water remediation materials and analytical techniques: a review. Microchem. J. 116, 62–76 (2014). https://doi.org/10.1016/j.microc.2014.04.001

    Article  Google Scholar 

  89. Sun, Y.J., Diao, Y.F., Wang, H.G., Chen, G., Zhang, M., Guo, M.: Synthesis, structure and magnetic properties of spinel ferrite (Ni, Cu, Co)Fe2O4 from low nickel matte. Ceram. Int. 43, 16474–16481 (2017). https://doi.org/10.1016/j.ceramint.2017.09.029

    Article  Google Scholar 

  90. Mak, S.Y., Chen, D.H.: Binding and sulfonation of poly(acrylic acid) on iron oxide nanoparticles: a novel, magnetic, strong acid cation nano-adsorbent. Macromol. Rapid Commun. 26, 1567–1571 (2005). https://doi.org/10.1002/marc.200500397

    Article  Google Scholar 

  91. Asrarian, R., Jadidian, R., Parham, H., Haghtalab, S.: Removal of aluminum from water and wastewater using magnetic iron oxide nanoparticles. Adv. Mater. Res. 829, 752–756 (2014). https://doi.org/10.4028/www.scientific.net/AMR.829.752

    Article  Google Scholar 

  92. Ungureanu, G., Santos, S., Boaventura, R., Botelho, C.: Arsenic and antimony in water and wastewater: overview of removal techniques with special reference to latest advances in adsorption. J. Environ. Manag. 151, 326–342 (2015). https://doi.org/10.1016/j.jenvman.2014.12.051

    Article  Google Scholar 

  93. Ren, S., Ai, Y., Zhang, X., Ruan, M., Hu, Z.N., Liu, L., Li, J., Wang, Y., Liang, J.X., Jia, H., Liu, Y.Y., Niu, D., Sun, H.B., Liang, Q.: Recycling Antimony(III) by magnetic carbon nanospheres: turning waste to recoverable catalytic for synthesis of esters and triazoles. ACS Sustain. Chem. Eng. 8, 469–477 (2020). https://doi.org/10.1021/acssuschemeng.9b05802

    Article  Google Scholar 

  94. Cho, D., Jeon, B., Chon, C., Kim, Y., Schwartz, F.W., Lee, E., Song, H.: A novel chitosan/clay/magnetite composite for adsorption of Cu(II) and As(V). Chem. Eng. J. 200–202, 654–662 (2012). https://doi.org/10.1016/j.cej.2012.06.126

    Article  Google Scholar 

  95. Liliana, S., Guégan, R., Liana, C., Motelica-heino, M., Steluta, C., Predoi, D.: Magnetite (Fe3O4) nanoparticles as adsorbents for As and Cu removal. Appl. Clay Sci. 134, 128–135 (2016). https://doi.org/10.1016/j.clay.2016.08.019

    Article  Google Scholar 

  96. Kumar, S., Nair, R.R., Pillai, P.B., Gupta, S.N., Iyengar, M.A.R., Sood, A.K.: Graphene oxide-MnFe2O4 magnetic nanohybrids for efficient removal of lead and arsenic from water. ACS Appl. Mater. Interfaces. 6, 17426–17436 (2014). https://doi.org/10.1021/am504826q

    Article  Google Scholar 

  97. Feng, Y., Gong, J.L., Zeng, G.M., Niu, Q.Y., Zhang, H.Y., Niu, C.G., Deng, J.H., Yan, M.: Adsorption of Cd (II) and Zn (II) from aqueous solutions using magnetic hydroxyapatite nanoparticles as adsorbents. Chem. Eng. J. 162, 487–494 (2010). https://doi.org/10.1016/j.cej.2010.05.049

    Article  Google Scholar 

  98. Kim, S.H., Lee, I.C., Baek, H.S., Moon, C., Kang, S.S., Bae, C.S., Kim, S.H., Shin, D.H., Kim, J.C.: Pycnogenol prevents hexavalent chromium-induced spermatotoxicity in rats. Mol. Cell. Toxicol. 8, 249–256 (2012). https://doi.org/10.1007/s13273-012-0030-8

    Article  Google Scholar 

  99. Song, X.S., Wang, S.F., Lu, J.Y.: Removal of chromium and nickel ions from synthetic solution by the ferrite process. Adv. Mater. Res. 113–116, 2251–2254 (2010). https://doi.org/10.4028/www.scientific.net/AMR.113-116.2251

    Article  Google Scholar 

  100. Larraza, I., López-Gónzalez, M., Corrales, T., Marcelo, G.: Hybrid materials: magnetite-polyethylenimine-montmorillonite, as magnetic adsorbents for Cr(VI) water treatment. J. Colloid Interface Sci. 385, 24–33 (2012). https://doi.org/10.1016/j.jcis.2012.06.050

    Article  ADS  Google Scholar 

  101. Shen, H., Chen, J., Dai, H., Wang, L., Hu, M., Xia, Q.: New insights into the sorption and detoxification of chromium(VI) by tetraethylenepentamine functionalized nanosized magnetic polymer adsorbents: mechanism and pH effect. Ind. Eng. Chem. Res. 52, 12723–12732 (2013). https://doi.org/10.1021/ie4010805

    Article  Google Scholar 

  102. Tahar, L.B., Oueslati, M.H., Grindi, B.: A comparative study of two new cozn nanoferrites: characterization, magnetic properties, and efficiency for the removal of hexavalent chromium from wastewaters. Desalin. Water Treat. 144, 243–256 (2019). https://doi.org/10.5004/dwt.2019.23682

    Article  Google Scholar 

  103. Albalah, M.A., Alsabah, Y.A., Mustafa, D.E.: Characteristics of co-precipitation synthesized cobalt nanoferrites and their potential in industrial wastewater treatment. SN Appl. Sci. 2, 1–9 (2020). https://doi.org/10.1007/s42452-020-2586-6

    Article  Google Scholar 

  104. Hu, J., Chen, G., Lo, I.M.C.: Selective removal of heavy metals from industrial wastewater using maghemite nanoparticle: performance and mechanisms. J. Environ. Eng. 132, 709–715 (2006). https://doi.org/10.1061/(ASCE)0733-9372(2006)132:7(709)

    Article  Google Scholar 

  105. Ji, J., Chen, G., Zhao, J.: Preparation and characterization of amino/thiol bifunctionalized magnetic nanoadsorbent and its application in rapid removal of Pb (II) from aqueous system. J. Hazard. Mater. 368, 255–263 (2019). https://doi.org/10.1016/j.jhazmat.2019.01.035

    Article  Google Scholar 

  106. Nassar, N.N.: Rapid removal and recovery of Pb(II) from wastewater by magnetic nanoadsorbents. J. Hazard. Mater. 184, 538–546 (2010). https://doi.org/10.1016/j.jhazmat.2010.08.069

    Article  ADS  Google Scholar 

  107. Ge, L., Wang, W., Peng, Z., Tan, F., Wang, X., Qiao, X.: Facile fabrication of Fe@MgO magnetic nanocomposites for efficient removal of heavy metal ion and dye from water. Powder Technol. 326, 393–401 (2018). https://doi.org/10.1016/j.powtec.2017.12.003

    Article  Google Scholar 

  108. Huang, L., He, M., Chen, B., Hu, B.: Magnetic Zr-MOFs nanocomposites for rapid removal of heavy metal ions and dyes from water. Chemosphere. 199, 435–444 (2018). https://doi.org/10.1016/j.chemosphere.2018.02.019

    Article  ADS  Google Scholar 

  109. Liu, J.F., Zhao, Z.S., Jiang, G.: Bin: coating Fe3O4 magnetic nanoparticles with humic acid for high efficient removal of heavy metals in water. Environ. Sci. Technol. 42, 6949–6954 (2008). https://doi.org/10.1021/es800924c

    Article  ADS  Google Scholar 

  110. Chen, Z., Geng, Z., Zhang, Z., Ren, L., Tao, T., Yang, R., Guo, Z.: Synthesis of magnetic Fe3O4@C nanoparticles modified with -SO3H and -COOH groups for fast removal of Pb2+, Hg2+, and Cd2+ ions. Eur. J. Inorg. Chem. 2014, 3172–3177 (2015). https://doi.org/10.1002/ejic.201301500

    Article  Google Scholar 

  111. Marimón-Bolívar, W., Tejeda-Benítez, L., Herrera, A.P.: Removal of mercury (II) from water using magnetic nanoparticles coated with amino organic ligands and yam peel biomass. Environ. Nanotechnology, Monit. Manag. 10, 486–493 (2018). https://doi.org/10.1016/j.enmm.2018.10.001

    Article  Google Scholar 

  112. Song, J., Kong, H., Jang, J.: Adsorption of heavy metal ions from aqueous solution by polyrhodanine-encapsulated magnetic nanoparticles. J. Colloid Interface Sci. 359, 505–511 (2011). https://doi.org/10.1016/j.jcis.2011.04.034

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Authors wish to acknowledge Gurujal, an initiative with District Administration, Gurugram for financial assistance vide Project No. 176 Gurujal dated 10-09-2019.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Atul Thakur.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bharti, M.K., Gupta, S., Chalia, S. et al. Potential of Magnetic Nanoferrites in Removal of Heavy Metals from Contaminated Water: Mini Review. J Supercond Nov Magn 33, 3651–3665 (2020). https://doi.org/10.1007/s10948-020-05657-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-020-05657-1

Keywords

Navigation