Skip to main content
Log in

A new insight into formation of 3D porous biomaterials

  • Materials for life sciences
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The degradation of poly(\(\varepsilon\)-caprolactone)/poly(l-lactic acid) (PCL/PLLA) electrospun membrane was carried out in the phosphate buffer of esterase and water, respectively. A three-dimensional (3D) porous morphology was cultivated during esterase degradation, which was confirmed by scanning electronic microscope (SEM), while the structural evolution was analyzed by differential scanning calorimetry (DSC) combining with wide-angle X-ray diffraction (WAXD). Compared with hydrolysis, the degradation rate of enzymolysis was significantly faster. With the rapid decline in PCL crystallinity, the crystallinity of PLLA increased slightly after enzymolysis. The formation of porous morphology should be attributed to the relatively rapid degradation of PCL crystal and PLLA amorphous region attacked by esterase. Also, the number of micropores on the fiber surface increased with degradation time, which provides new ideas for preparing porous materials with higher porosity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Banerjee A, Chatterjee K, Madras G (2014) Mater Sci Tech-lond 30:567. https://doi.org/10.1179/1743284713y.0000000503

    Article  CAS  Google Scholar 

  2. Sailema-Palate GP, Vidaurre A, Campillo AF, Castilla-Cortázar I (2016) Polym Degrad Stabil 130:118

    Article  CAS  Google Scholar 

  3. Dulnik J, Denis P, Sajkiewicz P, Kołbuk D, Choińska E (2016) Polym Degrad Stabil 130:10. https://doi.org/10.1016/j.polymdegradstab.2016.05.022

    Article  CAS  Google Scholar 

  4. Fukushima K, Feijoo LJ, Yang M-C (2012) Polym Degrad Stabil 97:2347

    Article  CAS  Google Scholar 

  5. Huang C, Thomas NL (2018) Eur Polym J 99:464. https://doi.org/10.1016/j.eurpolymj.2017.12.025

    Article  CAS  Google Scholar 

  6. Kyrikou I, Briassoulis D (2007) J Polym Environ 15:125. https://doi.org/10.1007/s10924-007-0053-8

    Article  CAS  Google Scholar 

  7. Kawai F, Hu X (2009) Appl Microbiol Biotechnol 84:227. https://doi.org/10.1007/s00253-009-2113-6

    Article  CAS  Google Scholar 

  8. Ning Z, Xin S, Wu X, Xu K, Han C, Dong L (2016) J Therm Anal Calorim 124:1705. https://doi.org/10.1007/s10973-016-5247-7

    Article  CAS  Google Scholar 

  9. Arrieta MP, López J, López D, Kenny JM, Peponi L (2015) Eur Polym J 73:433. https://doi.org/10.1016/j.eurpolymj.2015.10.036

    Article  CAS  Google Scholar 

  10. Gan Z, Liang Q, Zhang J, Jing X (1997) Polym Degrad Stabil 56:209. https://doi.org/10.1016/S0141-3910(96)00208-X

    Article  CAS  Google Scholar 

  11. Karamanlioglu M, Preziosi R, Robson GD (2017) Polym Degrad Stabil 137:122. https://doi.org/10.1016/j.polymdegradstab.2017.01.009

    Article  CAS  Google Scholar 

  12. Labow RS, Meek E, Matheson LA, Santerre JP (2002) Biomaterials 23:3969. https://doi.org/10.1016/s0142-9612(02)00137-0

    Article  CAS  Google Scholar 

  13. Chattopadhyay S, G S, G M (2003) Polym Degrad Stabil 80 477

  14. Sung H-J, Meredith C, Johnson C, Galis ZS (2004) Biomaterials 25:5735. https://doi.org/10.1016/j.biomaterials.2004.01.066

    Article  CAS  Google Scholar 

  15. Chouzouri G, Xanthos M (2007) Acta Biomater 3:745. https://doi.org/10.1016/j.actbio.2007.01.005

    Article  CAS  Google Scholar 

  16. Li S, Tenon M, Garreau H, Braud C, Vert M (2000) Polym Degrad Stabil 67:85. https://doi.org/10.1016/S0141-3910(99)00091-9

    Article  CAS  Google Scholar 

  17. Cho K, Lee J, Xing P (2010) J Appl Poly Sci 83:868

    Article  Google Scholar 

  18. Shahrezaee M, Salehi M, Keshtkari S, Oryan A, Kamali A, Shekarchi B (2018) Nanomedicine: nanotechnology. Biol Med 14:2061. https://doi.org/10.1016/j.nano.2018.06.007

    Article  CAS  Google Scholar 

  19. Scaffaro R, Lopresti F, Botta L (2017) Eur Polym J 96:266. https://doi.org/10.1016/j.eurpolymj.2017.09.016

    Article  CAS  Google Scholar 

  20. Navarro-Baena I, Sessini V, Dominici F, Torre L, Kenny JM, Peponi L (2016) Polym Degrad Stabil 132:97. https://doi.org/10.1016/j.polymdegradstab.2016.03.037

    Article  CAS  Google Scholar 

  21. Sivalingam G, Vijayalakshmi SP, Madras G (2004) Ind Eng Chem Res 43:7702. https://doi.org/10.1021/ie049589r

    Article  CAS  Google Scholar 

  22. Lee W-K, Nowak RW, Gardella JA (2002) Langmuir 18:2309. https://doi.org/10.1021/la011663c

    Article  CAS  Google Scholar 

  23. Fischer EW, Sterzel HJ, Wegner G (1973) Collid Polym Sci 251:980. https://doi.org/10.1007/BF01498927

    Article  CAS  Google Scholar 

  24. Chu CC (1981) J Appl Polym Sci 26:1727. https://doi.org/10.1002/app.1981.070260527

    Article  CAS  Google Scholar 

  25. Elsawy MA, Kim K-H, Park J-W, Deep A (2017) Renew Sust Energ Rev 79:1346. https://doi.org/10.1016/j.rser.2017.05.143

    Article  CAS  Google Scholar 

  26. Luzi F, Fortunati E, Puglia D, Petrucci R, Kenny JM, Torre L (2015) Polym Degrad Stabil 121:105. https://doi.org/10.1016/j.polymdegradstab.2015.08.016

    Article  CAS  Google Scholar 

  27. Han X, Pan J (2011) Acta Biomater 7:538

    Article  CAS  Google Scholar 

  28. Codari F, Lazzari S, Soos M, Storti G, Morbidelli M, Moscatelli D (2012) Polym Degrad Stabil 97:2460

    Article  CAS  Google Scholar 

  29. Gorrasi G, Pantani R (2013) Polym Degrad Stabil 98:1006

    Article  CAS  Google Scholar 

  30. Laycock B, Nikolić M, Colwell JM et al (2017) Prog Polym Sci 71:144. https://doi.org/10.1016/j.progpolymsci.2017.02.004

    Article  CAS  Google Scholar 

  31. Li C, Wang F, Chen P, Zhang Z, Guidoin R, Wang L (2017) J Mech Behav Biomed 75:455. https://doi.org/10.1016/j.jmbbm.2017.08.015

    Article  CAS  Google Scholar 

  32. Gautieri A, Mezzanzanica A, Motta A, Redealli A, Vesentini S (2012) J Mol Model 18:1495. https://doi.org/10.1007/s00894-011-1176-3

    Article  CAS  Google Scholar 

  33. Arrieta MP, Fortunati E, Dominici F, Rayon E, Lopez J, Kenny JM (2014) Polym Degrad Stabil 107:139. https://doi.org/10.1016/j.polymdegradstab.2014.05.010

    Article  CAS  Google Scholar 

  34. Hakkarainen M (2001) Aliphatic polyesters: abiotic and biotic degradation and degradation products. Adv Polym Sci 157:113. https://doi.org/10.1007/3-540-45734-8_4

    Article  Google Scholar 

  35. Albertsson A-C, Karlsson S (1993) Int Biodeter Biodegr 31:161. https://doi.org/10.1016/0964-8305(93)90002-J

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. Xiangyang Li for assistance on the SR-\({\upmu }\)SXRD experiments. This work was supported by the National Science Foundation of China (51503186, 51803189) and Key Scientific Research Projects of Higher Education Institutions in Henan Province (21A430043).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yanping Liu or Nan Tian.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Handling Editor: Annela M. Seddon.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 759 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Wang, Y., Zhang, M. et al. A new insight into formation of 3D porous biomaterials. J Mater Sci 56, 3404–3413 (2021). https://doi.org/10.1007/s10853-020-05447-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-05447-z

Navigation