Skip to main content

Advertisement

Log in

Assembling flower-on-sheet CoP–NiCoP nanohybrids as efficient self-supported electrocatalysts for hydrogen evolution reaction in both acidic and alkaline media

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Self-supported electrocatalysts are directly employed as electrodes for water splitting. Herein, we report an effective strategy to develop flower-on-sheet structured nanohybrids, where CoP nanoflowers are epitaxially grown along the edges of Ni-Co-P nanosheets (namely NiCoP) on carbon cloth (m-CoP–NiCoP/CC), thus obtained as efficient self-supported electrodes for the hydrogen evolution reaction (HER) in both acidic and alkaline media. This unique nanostructure endows NiCoP nanosheets with maximal exposed surface area, along with increased active sites brought by CoP nanoflowers. Moreover, due to good electrical connection between CoP nanoflowers and NiCoP, and between conductive NiCoP and carbon cloth, electrons can easily transfer from active sites to the conductive substrates. Therefore, the m-CoP–NiCoP/CC exhibits superior catalytic activity and stability for HER in both acidic and alkaline media. The as-prepared electrocatalyst requires overpotentials of only 75.0–81.5 mV to deliver a benchmark current density of 10 mA cm−2 in acidic and alkaline media, respectively, which are superior to most of the previously reported metal phosphides-based electrocatalysts. Hence, this work can provide a design for developing highly active electrocatalysts for water splitting.

Graphical abstract

The self-supported CoP-NiCoP nanohybrids were prepared as efficient and durable electrocatalysts for hydrogen evolution reaction in both acidic and alkaline media, where CoP nanoflowers are epitaxially grown along the edges of NiCoP nanosheets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Marshall A, Børresen B, Hagen G, Tsypkin M, Tunold R (2007) Hydrogen production by advanced proton exchange membrane (PEM) water electrolysers—reduced energy consumption by improved electrocatalysis. Energy 32(4):431–436. https://doi.org/10.1016/j.energy.2006.07.014

    Article  CAS  Google Scholar 

  2. Lei Q, Wang B, Wang P, Liu S (2019) Hydrogen generation with acid/alkaline amphoteric water electrolysis. J Energy Chem 38:162–169. https://doi.org/10.1016/j.jechem.2018.12.022

    Article  Google Scholar 

  3. Wang P, Wan L, Lin Y, Wang B (2019a) MoS2 supported CoS2 on carbon cloth as a high-performance electrode for hydrogen evolution reaction. Int J Hydrog Energy 44(31):16566–16574. https://doi.org/10.1016/j.ijhydene.2019.04.195

    Article  CAS  Google Scholar 

  4. Wang H, Li Y, Li Y, He B, Wang R, Gong Y (2018) MOFs-derived hybrid nanosheet arrays of nitrogen-rich CoS2 and nitrogen-doped carbon for efficient hydrogen evolution in both alkaline and acidic media. Int J Hydrog Energy 43(52):23319–23326. https://doi.org/10.1016/j.ijhydene.2018.10.178

    Article  CAS  Google Scholar 

  5. Shao M, Wang P, Wang Y, Wang B, Wang Y, Xu J (2020) Continuous synthesis of few-layer MoS2 with highly electrocatalytic hydrogen evolution. Green Energy Environ. https://doi.org/10.1016/j.gee.2020.04.008

    Article  Google Scholar 

  6. Wei L, Luo J, Jiang L, Qiu L, Zhang J, Zhang D, Xu P, Yuan D (2018) CoSe2 nanoparticles grown on carbon nanofibers derived from bacterial cellulose as an efficient electrocatalyst for hydrogen evolution reaction. Int J Hydrog Energy 43(45):20704–20711. https://doi.org/10.1016/j.ijhydene.2018.09.151

    Article  CAS  Google Scholar 

  7. Yan X, Wang G, Zhang Y, Guo Q, Jin Z (2020) 3D layered nano-flower MoSx anchored with CoP nanoparticles form double proton adsorption site for enhanced photocatalytic hydrogen evolution under visible light driven. Int J Hydrog Energy 45(4):2578–2592. https://doi.org/10.1016/j.ijhydene.2019.11.227

    Article  CAS  Google Scholar 

  8. Chen Z, Jia H, Yuan J, Liu X, Fang C, Fan Y, Cao C, Chen Z (2019) N, P-co-doped carbon coupled with CoP as superior electrocatalysts for hydrogen evolution reaction and overall water splitting. Int J Hydrog Energy 44(45):24342–24352. https://doi.org/10.1016/j.ijhydene.2019.07.185

    Article  CAS  Google Scholar 

  9. Xie J-Y, Liu Z-Z, Li J, Feng L, Yang M, Ma Y, Liu D-P, Wang L, Chai Y-M, Dong B (2020) Fe-doped CoP core–shell structure with open cages as efficient electrocatalyst for oxygen evolution. J Energy Chem 48:328–333. https://doi.org/10.1016/j.jechem.2020.02.031

    Article  Google Scholar 

  10. Ji L, Wang J, Teng X, Meyer TJ, Chen Z (2020) CoP nanoframes as bifunctional electrocatalysts for efficient overall water splitting. ACS Catal 10(1):412–419. https://doi.org/10.1021/acscatal.9b03623

    Article  CAS  Google Scholar 

  11. Wang H, Min S, Wang Q, Li D, Casillas G, Ma C, Li Y, Liu Z, Li L-J, Yuan J, Antonietti M, Wu T (2017) Nitrogen-doped nanoporous carbon membranes with Co/CoP janus-type nanocrystals as hydrogen evolution electrode in both acidic and alkaline environments. ACS Nano 11(4):4358–4364. https://doi.org/10.1021/acsnano.7b01946

    Article  CAS  Google Scholar 

  12. Boppella R, Tan J, Yang W, Moon J (2019) Homologous CoP/NiCoP heterostructure on N-doped carbon for highly efficient and pH-universal hydrogen evolution electrocatalysis. Adv Funct Mater 29(6):1807976. https://doi.org/10.1002/adfm.201807976

    Article  CAS  Google Scholar 

  13. Xiao X, He C-T, Zhao S, Li J, Lin W, Yuan Z, Zhang Q, Wang S, Dai L, Yu D (2017) A general approach to cobalt-based homobimetallic phosphide ultrathin nanosheets for highly efficient oxygen evolution in alkaline media. Energy EnvironSci 10(4):893–899. https://doi.org/10.1039/C6EE03145E

    Article  CAS  Google Scholar 

  14. Pu Z, Liu Q, Jiang P, Asiri AM, Obaid AY, Sun X (2014) CoP nanosheet arrays supported on a ti plate: an efficient cathode for electrochemical hydrogen evolution. Chem Mater 26(15):4326–4329. https://doi.org/10.1021/cm501273s

    Article  CAS  Google Scholar 

  15. Wang P-c, Wan L, Lin Y-q, Wang B-g (2019b) NiFe hydroxide supported on hierarchically porous nickel mesh as a high-performance bifunctional electrocatalyst for water splitting at large current density. Chemsuschem 12(17):4038–4045. https://doi.org/10.1002/cssc.201901439

    Article  CAS  Google Scholar 

  16. Wang P, Lin Y, Wan L, Wang B (2020a) Autologous growth of Fe-doped Ni(OH)2 nanosheets with low overpotential for oxygen evolution reaction. Int J Hydrog Energy 45(11):6416–6424. https://doi.org/10.1016/j.ijhydene.2019.12.156

    Article  CAS  Google Scholar 

  17. Du H, Liu Q, Cheng N, Asiri AM, Sun X, Li CM (2014) Template-assisted synthesis of CoP nanotubes to efficiently catalyze hydrogen-evolving reaction. J Mater Chem A 2(36):14812–14816. https://doi.org/10.1039/C4TA02368D

    Article  CAS  Google Scholar 

  18. Tian J, Liu Q, Cheng N, Asiri AM, Sun X (2014) Self-supported Cu3P nanowire arrays as an integrated high-performance three-dimensional cathode for generating hydrogen from water. Angew Chem Int Ed 53(36):9577–9581. https://doi.org/10.1002/anie.201403842

    Article  CAS  Google Scholar 

  19. Guan C, Xiao W, Wu H, Liu X, Zang W, Zhang H, Ding J, Feng YP, Pennycook SJ, Wang J (2018) Hollow mo-doped CoP nanoarrays for efficient overall water splitting. Nano Energy 48:73–80. https://doi.org/10.1016/j.nanoen.2018.03.034

    Article  CAS  Google Scholar 

  20. Niu Z, Qiu C, Jiang J, Ai L (2019) Hierarchical CoP–FeP branched heterostructures for highly efficient electrocatalytic water splitting. ACS Sustain Chem Engin 7(2):2335–2342. https://doi.org/10.1021/acssuschemeng.8b05089

    Article  CAS  Google Scholar 

  21. Jin H, Wang J, Su D, Wei Z, Pang Z, Wang Y (2015) In situ cobalt-cobalt oxide/N-doped carbon hybrids as superior bifunctional electrocatalysts for hydrogen and oxygen evolution. J Am Chem Soc 137(7):2688–2694. https://doi.org/10.1021/ja5127165

    Article  CAS  Google Scholar 

  22. Pan Y, Lin Y, Liu Y, Liu C (2016) A novel CoP/MoS2-CNTs hybrid catalyst with Pt-like activity for hydrogen evolution. Catal Sci Technol 6(6):1611–1615. https://doi.org/10.1039/C5CY02299A

    Article  CAS  Google Scholar 

  23. Wang P, Lin Y, Wan L, Wang B (2019) Construction of a janus MnO2-NiFe electrode via selective electrodeposition strategy as a high-performance bifunctional electrocatalyst for rechargeable zinc-air batteries. ACS Appl Mater Interfaces 11(41):37701–37707. https://doi.org/10.1021/acsami.9b12232

    Article  CAS  Google Scholar 

  24. Wang P, Wan L, Lin Y, Wang B (2019c) Construction of mass-transfer channel in air electrode with bifunctional catalyst for rechargeable zinc-air battery. Electrochim Acta 320:134564. https://doi.org/10.1016/j.electacta.2019.134564

    Article  CAS  Google Scholar 

  25. Wang P, Jia T, Wang B (2020a) A critical review: 1D/2D nanostructured self-supported electrodes for electrochemical water splitting. J Power Sour 474:228621. https://doi.org/10.1016/j.jpowsour.2020.228621

    Article  CAS  Google Scholar 

  26. Wang P, Jia T, Wang B (2020b) Review—recent advance in self-supported electrocatalysts for rechargeable zinc-air batteries. J Electrochem Soc 167(11):110564. https://doi.org/10.1149/1945-7111/aba96e

    Article  CAS  Google Scholar 

  27. Wang P, Wang B (2020) Interface engineering of binder-free earth-abundant electrocatalysts for efficient advanced energy conversion. Chemsuschem 13(18):4795–4811. https://doi.org/10.1002/cssc.202001293

    Article  CAS  Google Scholar 

  28. Li Z, Cui J, Liu Y, Li J, Liu K, Shao M (2018) Electrosynthesis of well-defined metal-organic framework films and the carbon nanotube network derived from them toward electrocatalytic applications. ACS Appl Mater Interfaces 10(40):34494–34501. https://doi.org/10.1021/acsami.8b12854

    Article  CAS  Google Scholar 

  29. Yang X, Lu A-Y, Zhu Y, Hedhili MN, Min S, Huang K-W, Han Y, Li L-J (2015) CoP nanosheet assembly grown on carbon cloth: a highly efficient electrocatalyst for hydrogen generation. Nano Energy 15:634–641. https://doi.org/10.1016/j.nanoen.2015.05.026

    Article  CAS  Google Scholar 

  30. Che Q, Li Q, Chen X, Tan Y, Xu X (2020) Assembling amorphous (Fe-Ni)Cox-OH/Ni3S2 nanohybrids with S-vacancy and interfacial effects as an ultra-highly efficient electrocatalyst: inner investigation of mechanism for alkaline water-to-hydrogen/oxygen conversion. Appl Catal B 263:118338. https://doi.org/10.1016/j.apcatb.2019.118338

    Article  CAS  Google Scholar 

  31. Wang J-G, Hua W, Li M, Liu H, Shao M, Wei B (2018) Structurally engineered hyperbranched NiCoP arrays with superior electrocatalytic activities toward highly efficient overall water splitting. ACS Appl Mater Interfaces 10(48):41237–41245. https://doi.org/10.1021/acsami.8b11576

    Article  CAS  Google Scholar 

  32. Wang P, Lin Y, Wan L, Wang B (2020b) Core-shell Cu@CoP as highly efficient and durable bifunctional electrodes for electrochemical water splitting. Energy Fuels 34(8):10276–10281. https://doi.org/10.1021/acs.energyfuels.0c01493

    Article  CAS  Google Scholar 

  33. Wang P, Xu Z, Lin Y, Wan L, Wang B (2020) Exceptional performance of MOF-derived N-doped CoP and Fe-doped CoOOH ultrathin nanosheets electrocatalysts for overall water splitting. ACS Sustain Chem Engin 8(24):8949–8957. https://doi.org/10.1021/acssuschemeng.0c01293

    Article  CAS  Google Scholar 

  34. Korányi TI (2003) Phosphorus promotion of Ni (Co)-containing Mo-free catalysts in thiophene hydrodesulfurization. Appl Catal A 239(1):253–267. https://doi.org/10.1016/S0926-860X(02)00390-3

    Article  Google Scholar 

  35. Liu T, Li P, Yao N, Cheng G, Chen S, Luo W, Yin Y (2019) CoP-doped MOF-based electrocatalyst for pH-universal hydrogen evolution reaction. Angew Chem 58(14):4679–4684. https://doi.org/10.1002/anie.201901409

    Article  CAS  Google Scholar 

  36. Conway BE, Tilak BV (2002) Interfacial processes involving electrocatalytic evolution and oxidation of H2, and the role of chemisorbed H. Electrochim Acta 47(22):3571–3594. https://doi.org/10.1016/S0013-4686(02)00329-8

    Article  CAS  Google Scholar 

  37. Liu C, Gong T, Zhang J, Zheng X, Mao J, Liu H, Li Y, Hao Q (2020) Engineering Ni2P-NiSe2 heterostructure interface for highly efficient alkaline hydrogen evolution. Appl Catal B 262:118245. https://doi.org/10.1016/j.apcatb.2019.118245

    Article  CAS  Google Scholar 

  38. Wang X-D, Xu Y-F, Rao H-S, Xu W-J, Chen H-Y, Zhang W-X, Kuang D-B, Su C-Y (2016) Novel porous molybdenum tungsten phosphide hybrid nanosheets on carbon cloth for efficient hydrogen evolution. Energy Environ Sci 9(4):1468–1475. https://doi.org/10.1039/C5EE03801D

    Article  CAS  Google Scholar 

  39. Liu Q, Tian J, Cui W, Jiang P, Cheng N, Asiri AM, Sun X (2014) Carbon nanotubes decorated with CoP nanocrystals: a highly active non-noble-metal nanohybrid electrocatalyst for hydrogen evolution. Angew Chem Int Ed 53(26):6710–6714. https://doi.org/10.1002/anie.201404161

    Article  CAS  Google Scholar 

  40. Zhang R, Wang X, Yu S, Wen T, Zhu X, Yang F, Sun X, Wang X, Hu W (2017) Ternary NiCo2Px nanowires as pH-universal electrocatalysts for highly efficient hydrogen evolution reaction. Adv Mater 29(9):1605502. https://doi.org/10.1002/adma.201605502

    Article  CAS  Google Scholar 

  41. Popczun EJ, McKone JR, Read CG, Biacchi AJ, Wiltrout AM, Lewis NS, Schaak RE (2013) Nanostructured nickel phosphide as an electrocatalyst for the hydrogen evolution reaction. J Am Chem Soc 135(25):9267–9270. https://doi.org/10.1021/ja403440e

    Article  CAS  Google Scholar 

  42. Huang Z, Chen Z, Chen Z, Lv C, Meng H, Zhang C (2014) Ni12P5 Nanoparticles as an efficient catalyst for hydrogen generation via electrolysis and photoelectrolysis. ACS Nano 8(8):8121–8129. https://doi.org/10.1021/nn5022204

    Article  CAS  Google Scholar 

  43. Huang Z, Chen Z, Chen Z, Lv C, Humphrey MG, Zhang C (2014) Cobalt phosphide nanorods as an efficient electrocatalyst for the hydrogen evolution reaction. Nano Energy 9:373–382. https://doi.org/10.1016/j.nanoen.2014.08.013

    Article  CAS  Google Scholar 

  44. Liu B, Li H, Cao B, Jiang J, Gao R, Zhang J (2018) Few layered N, P dual-doped carbon-encapsulated ultrafine MoP nanocrystal/MoP cluster hybrids on carbon cloth: an ultrahigh active and durable 3d self-supported integrated electrode for hydrogen evolution reaction in a wide pH range. AdvFunct Mater 28(30):1801527. https://doi.org/10.1002/adfm.201801527

    Article  CAS  Google Scholar 

  45. Zhou H, Yu F, Huang Y, Sun J, Zhu Z, Nielsen RJ, He R, Bao J, Goddard Iii WA, Chen S, Ren Z (2016) Efficient hydrogen evolution by ternary molybdenum sulfoselenide particles on self-standing porous nickel diselenide foam. NatCommun 7(1):12765. https://doi.org/10.1038/ncomms12765

    Article  CAS  Google Scholar 

  46. Mishra IK, Zhou H, Sun J, Qin F, Dahal K, Bao J, Chen S, Ren Z (2018) Hierarchical CoP/Ni5P4/CoP microsheet arrays as a robust pH-universal electrocatalyst for efficient hydrogen generation. Energy Environ Sci 11(8):2246–2252. https://doi.org/10.1039/C8EE01270A

    Article  CAS  Google Scholar 

  47. Yu X, Wang M, Gong X, Guo Z, Wang Z, Jiao S (2018) Self-supporting porous CoP-Based films with phase-separation structure for ultrastable overall water electrolysis at large current density. Adv Energy Mater 8(34):1802445. https://doi.org/10.1002/aenm.201802445

    Article  CAS  Google Scholar 

  48. Chang B, Hao S, Ye Z, Yang Y (2018) A self-supported amorphous Ni–P alloy on a CuO nanowire array: an efficient 3D electrode catalyst for water splitting in alkaline media. Chem Commun 54(19):2393–2396. https://doi.org/10.1039/C7CC09007B

    Article  CAS  Google Scholar 

  49. Jiang Y, Lu Y, Lin J, Wang X, Shen Z (2018) A Hierarchical MoP nanoflake array supported on Ni foam: a bifunctional electrocatalyst for overall water splitting. Small Methods 2(5):1700369. https://doi.org/10.1002/smtd.201700369

    Article  CAS  Google Scholar 

  50. Fu Q, Wu T, Fu G, Gao T, Han J, Yao T, Zhang Y, Zhong W, Wang X, Song B (2018) Skutterudite-Type ternary Co1–xNixP3 Nanoneedle array electrocatalysts for enhanced hydrogen and oxygen evolution. ACS Energy Lett 3(7):1744–1752. https://doi.org/10.1021/acsenergylett.8b00908

    Article  CAS  Google Scholar 

  51. Zhang H, Li X, Hähnel A, Naumann V, Lin C, Azimi S, Schweizer SL, Maijenburg AW, Wehrspohn RB (2018) Bifunctional heterostructure assembly of NiFe LDH nanosheets on NiCoP nanowires for highly efficient and stable overall water splitting. Adv Funct Mater 28(14):1706847. https://doi.org/10.1002/adfm.201706847

    Article  CAS  Google Scholar 

  52. Tian J, Liu Q, Asiri AM, Sun X (2014) Self-supported nanoporous cobalt phosphide nanowire arrays: an efficient 3d hydrogen-evolving cathode over the wide range of pH 0–14. J Am Chem Soc 136(21):7587–7590. https://doi.org/10.1021/ja503372r

    Article  CAS  Google Scholar 

  53. Menezes PW, Indra A, Das C, Walter C, Göbel C, Gutkin V, Schmeiβer D, Driess M (2017) Uncovering the nature of active species of nickel phosphide catalysts in high-performance electrochemical overall water splitting. ACS Catal 7(1):103–109. https://doi.org/10.1021/acscatal.6b02666

    Article  CAS  Google Scholar 

  54. Yuan C-Z, Zhong S-L, Jiang Y-F, Yang ZK, Zhao Z-W, Zhao S-J, Jiang N, Xu A-W (2017) Direct growth of cobalt-rich cobalt phosphide catalysts on cobalt foil: an efficient and self-supported bifunctional electrode for overall water splitting in alkaline media. J Mater Chem A 5(21):10561–10566. https://doi.org/10.1039/C7TA01776F

    Article  CAS  Google Scholar 

  55. Feng Y, Yu X-Y, Paik U (2016) Nickel cobalt phosphides quasi-hollow nanocubes as an efficient electrocatalyst for hydrogen evolution in alkaline solution. Cheml Commun 52(8):1633–1636. https://doi.org/10.1039/C5CC08991C

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key R&D Program of China (2018YFE0202001) and the Nation Natural Science Foundation of China (21776154).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaohong Li or Baoguo Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Handling Editor: Joshua Tong.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 9662 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, Y., Wang, P., Loh, A. et al. Assembling flower-on-sheet CoP–NiCoP nanohybrids as efficient self-supported electrocatalysts for hydrogen evolution reaction in both acidic and alkaline media. J Mater Sci 56, 3375–3386 (2021). https://doi.org/10.1007/s10853-020-05445-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-05445-1

Navigation