Skip to main content
Log in

Photocatalytic MOF fibrous membranes for cyclic adsorption and degradation of dyes

  • Composites & nanocomposites
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Metal–organic frameworks (MOF) have attracted great attention in the field of wastewater treatment. When MOF nanoparticles are used for adsorption applications, the nanoparticles normally have to be separated from the dispersed suspension by filtration or centrifugation for regeneration or recycling. In order to avoid this costly and time consuming process, MOF (NH2-MIL-125) nanofibrous hybrid membranes with photocatalytic properties were successfully fabricated in this study. The MOF membranes were characterized by using XRD, SEM, FTIR, TGA, BET, and UV–Vis. The adsorption (including capacity, mechanism, dynamic, and isotherm) of dyes by the membranes is studied in great detail. The membranes exhibit great adsorption capacity to methylene blue and sodium fluorescein, and the adsorption is dominated by steric hindrance of dye molecule, not the π–π interactions and the zeta potential. Most importantly, the MOF membranes could be easily separated from the dyes solution and regenerated via a visible light catalytic degradation process for recycling, and the photocatalytic mechanism is discussed.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Wang S, Peng Y (2010) Natural zeolites as effective adsorbents in water and wastewater treatment. Chem Eng J 156:11–24

    CAS  Google Scholar 

  2. Brillas E, Martínez-Huitle CA (2015) Decontamination of wastewaters containing synthetic organic dyes by electrochemical methods. An updated review. Appl Catal B Environ 166:603–643

    Google Scholar 

  3. Saratale RG, Saratale GD, Kalyani DC, Chang JS, Govindwar SP (2009) Enhanced decolorization and biodegradation of textile azo dye Scarlet R by using developed microbial consortium-GR. Bioresour Technol 100:2493–2500

    CAS  Google Scholar 

  4. Robinson T, McMullan G, Marchant R, Nigam P (2001) Remediation of dyes in textile effluent: a critical review on current treatment technologies with a proposed alternative. Bioresour Technol 77:247–255

    CAS  Google Scholar 

  5. Salleh MAM, Mahmoud DK, Karim WAWA, Idris A (2011) Cationic and anionic dye adsorption by agricultural solid wastes: a comprehensive review. Desalination 280:1–13

    CAS  Google Scholar 

  6. Adeyemo AA, Adeoye IO, Bello OS (2012) Metal organic frameworks as adsorbents for dye adsorption: overview, prospects and future challenges. Toxicol Environ Chem 94:1846–1863

    CAS  Google Scholar 

  7. Zhou H, Long JR, Yaghi OM (2012) Introduction to metal–organic frameworks. Chem Rev 112:673–674

    CAS  Google Scholar 

  8. Li H, Eddaoudi M, O’Keeffe M, Yaghi OM (1999) Design and synthesis of an exceptionally stable and highly porous metal-organic framework. Nature 402:276–279

    CAS  Google Scholar 

  9. Chen Q, He Q, Lv M et al (2015) Selective adsorption of cationic dyes by UiO-66-NH2. Appl Surf Sci 327:77–85

    CAS  Google Scholar 

  10. Oveisi M, Asli MA, Mahmoodi NM (2018) MIL-Ti metal–organic frameworks (MOFs) nanomaterials as superior adsorbents: synthesis and ultrasound-aided dye adsorption from multicomponent wastewater systems. J Hazard Mater 347:123–140

    CAS  Google Scholar 

  11. Ahmed I, Khan NA, Yoon JW, Chang J-S, Jhung SH (2017) Protonated MIL-125-NH2: remarkable adsorbent for the removal of Quinoline and Indole from liquid fuel. ACS Appl Mater Inter 9:20938–20946

    CAS  Google Scholar 

  12. Efome JE, Rana D, Matsuura T, Lan CQ (2018) Insight studies on metal-organic framework nanofibrous membrane adsorption and activation for heavy metal ions removal from aqueous solution. ACS Appl Mater Inter 10:18619–18629

    CAS  Google Scholar 

  13. Wang C, Zheng T, Luo R et al (2018) In Situ growth of ZIF-8 on PAN fibrous filters for highly efficient U(VI) removal. ACS Appl Mater Inter 10:24164–24171

    CAS  Google Scholar 

  14. Wang C, Wang H, Luo R et al (2017) Metal–organic framework one-dimensional fibers as efficient catalysts for activating peroxymonosulfate. Chem Eng J 330:262–271

    CAS  Google Scholar 

  15. Zhang Y, Zhang Y, Wang X, Yu J, Ding B (2018) Ultrahigh metal–organic framework loading and flexible nanofibrous membranes for efficient CO2 capture with long-term, ultrastable recyclability. ACS Appl Mater Inter 10:34802–34810

    CAS  Google Scholar 

  16. Gu Z, Zhang J (2019) Epitaxial growth and applications of oriented metal–organic framework thin films. Coord Chem Rev 378:513–532

    CAS  Google Scholar 

  17. Liu C, Wu Y, Morlay C et al (2016) General deposition of metal–organic frameworks on highly adaptive organic–inorganic hybrid electrospun fibrous substrates. ACS Appl Mater Inter 8:2552–2561

    CAS  Google Scholar 

  18. Jeremias F, Lozan V, Henninger SK, Janiak C (2013) Programming MOFs for water sorption: amino-functionalized MIL-125 and UiO-66 for heat transformation and heat storage applications. Dalton Trans 42:15967–15973

    CAS  Google Scholar 

  19. Kim S-N, Kim J, Kim H-Y, Cho H-Y, Ahn W-S (2013) Adsorption/catalytic properties of MIL-125 and NH2-MIL-125. Catal Today 204:85–93

    CAS  Google Scholar 

  20. Sun D, Ye L, Li Z (2015) Visible-light-assisted aerobic photocatalytic oxidation of amines to imines over NH2-MIL-125(Ti). Appl Catal B Environ 164:428–432

    CAS  Google Scholar 

  21. Fu Y, Sun D, Chen Y et al (2012) An amine-functionalized titanium metal–organic framework photocatalyst with visible-light-induced activity for CO2 reduction. Angew Chem Int Ed 51:3364–3367

    CAS  Google Scholar 

  22. Liu C, Wu Y, Yu A, Li F (2014) Cooperative fabrication of ternary nanofibers with remarkable solvent and temperature resistance by electrospinning. RSC Adv 4:31400–31408

    CAS  Google Scholar 

  23. Hendon CH, Tiana D, Fontecave M et al (2013) Engineering the optical response of the titanium-MIL-125 metal-organic framework through ligand functionalization. J Am Chem Soc 135:10942–10945

    CAS  Google Scholar 

  24. Kawase Y, Isaka Y, Kuwahara Y, Mori K, Yamashita H (2019) Ti cluster-alkylated hydrophobic MOFs for photocatalytic production of hydrogen peroxide in two-phase systems. Chem Commun 55:6743–6746

    CAS  Google Scholar 

  25. Peterson GW, Lu AX, Epps TH (2017) Tuning the morphology and activity of electrospun polystyrene/UiO-66-NH2 metal–organic framework composites to enhance chemical warfare agent removal. ACS Appl Mater Inter 9:32248–32254

    CAS  Google Scholar 

  26. Wu GM, Lin SJ, Yang CC (2006) Preparation and characterization of PVA/PAA membranes for solid polymer electrolytes. J Membr Sci 275:127–133

    CAS  Google Scholar 

  27. Pirzada T, Arvidson SA, Saquing CD, Shah SS, Khan SA (2012) Hybrid Silica–PVA Nanofibers via Sol-Gel Electrospinning. Langmuir 28:5834–5844

    CAS  Google Scholar 

  28. Bibi R, Wei L, Shen Q et al (2017) Effect of amino functionality on the uptake of cationic dye by titanium-based metal organic frameworks. J Chem Eng Data 62:1615–1622

    CAS  Google Scholar 

  29. Dan-Hardi M, Serre C, Frot T et al (2009) A new photoactive crystalline highly porous titanium(IV) dicarboxylate. J Am Chem Soc 131:10857–10859

    CAS  Google Scholar 

  30. Andrew Lin K-Y, Chang H-A (2015) A zeolitic imidazole framework (ZIF)–sponge composite prepared via a surfactant-assisted dip-coating method. J Mater Chem A 3:20060–20064

    CAS  Google Scholar 

  31. Pei R, Fan L, Zhao F et al (2020) 3D-printed metal-organic frameworks within biocompatible polymers as excellent adsorbents for organic dyes removal. J Hazard Mater 384:121418

    CAS  Google Scholar 

  32. Silveira JV, Moraes EC, Moura JVB et al (2020) Mo-doped WO3 nanowires for adsorbing methylene blue dye from wastewater. J Mater Sci 55:6429–6440. https://doi.org/10.1007/s10853-020-04472-2

    Article  CAS  Google Scholar 

  33. Zhang W, Zhang R-Z, Huang Y-Q, Yang J-M (2018) Effect of the synergetic interplay between the electrostatic interactions, size of the dye molecules, and adsorption sites of MIL-101(Cr) on the adsorption of organic dyes from aqueous solutions. Cryst Growth Des 18:7533–7540

    CAS  Google Scholar 

  34. Kim J, Kang T, Kim H, Shin HJ, Oh S-G (2019) Preparation of PVA/PAA nanofibers containing thiol-modified silica particles by electrospinning as an eco-friendly Cu (II) adsorbent. J Ind Eng Chem 77:273–279

    CAS  Google Scholar 

  35. Foo KY, Hameed BH (2010) Insights into the modeling of adsorption isotherm systems. Chem Eng J 156:2–10

    CAS  Google Scholar 

  36. Wang Y, Katepalli H, Gu T, Hatton TA, Wang Y (2018) Functionalized magnetic silica nanoparticles for highly efficient adsorption of Sm3+ from a dilute aqueous solution. Langmuir 34:2674–2684

    CAS  Google Scholar 

  37. Hasan Z, Choi E-J, Jhung SH (2013) Adsorption of naproxen and clofibric acid over a metal–organic framework MIL-101 functionalized with acidic and basic groups. Chem Eng J 219:537–544

    CAS  Google Scholar 

  38. Yan J, Huang Y, Miao Y-E, Tjiu WW, Liu T (2015) Polydopamine-coated electrospun poly(vinyl alcohol)/poly(acrylic acid) membranes as efficient dye adsorbent with good recyclability. J Hazard Mater 283:730–739

    CAS  Google Scholar 

  39. Shen L, Luo M, Huang L, Feng P, Wu L (2015) A clean and general strategy to decorate a titanium metal–organic framework with noble-metal nanoparticles for versatile photocatalytic applications. Inorg Chem 54:1191–1193

    CAS  Google Scholar 

  40. Yang Z, Ding J, Feng J et al (2018) Preparation of BiVO4/MIL-125(Ti) composite with enhanced visible-light photocatalytic activity for dye degradation. Appl Organomet Chem 32:e4285

    Google Scholar 

  41. Wang H, Yuan X, Wu Y et al (2015) Facile synthesis of amino-functionalized titanium metal-organic frameworks and their superior visible-light photocatalytic activity for Cr(VI) reduction. J Hazard Mater 286:187–194

    CAS  Google Scholar 

  42. Rodríguez NA, Savateev A, Grela MA, Dontsova D (2017) Facile synthesis of potassium poly(heptazine imide) (PHIK)/Ti-based metal-organic framework (MIL-125-NH2) composites for photocatalytic applications. ACS Appl Mater Inter 9:22941–22949

    Google Scholar 

  43. Tomita O, Ohtani B, Abe R (2014) Highly selective phenol production from benzene on a platinum-loaded tungsten oxide photocatalyst with water and molecular oxygen: selective oxidation of water by holes for generating hydroxyl radical as the predominant source of the hydroxyl group. Catal Sci Technol 4:3850–3860

    CAS  Google Scholar 

  44. Sun Z, Chen Y, Ke Q, Yang Y, Yuan J (2002) Photocatalytic degradation of a cationic azo dye by TiO2/bentonite nanocomposite. J Photochem Photobiol, A 149:169–174

    CAS  Google Scholar 

  45. Liu Y, Zhu Y, Xu J, Bai X, Zong R, Zhu Y (2013) Degradation and mineralization mechanism of phenol by BiPO4 photocatalysis assisted with H2O2. Appl Catal B: Environ 142:561–567

    Google Scholar 

  46. Hu Q, Di J, Wang B et al (2019) In-situ preparation of NH2-MIL-125(Ti)/BiOCl composite with accelerating charge carriers for boosting visible light photocatalytic activity. Appl Surf Sci 466:525–534

    CAS  Google Scholar 

Download references

Acknowledgements

Financial support from the National Natural Science Foundation of China (grant no. 21802036) and the Science and Technology Department of Hubei Province (grant no. 218CFB110) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhengbang Wang.

Additional information

Handling Editor: Chris Cornelius.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 4943 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, J., Huang, D., Zeng, F. et al. Photocatalytic MOF fibrous membranes for cyclic adsorption and degradation of dyes. J Mater Sci 56, 3127–3139 (2021). https://doi.org/10.1007/s10853-020-05473-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-05473-x

Navigation