Skip to main content
Log in

Time-course transcriptomics reveals that amino acids catabolism plays a key role in toxinogenesis and morphology in Clostridium tetani

  • Fermentation, Cell Culture and Bioengineering - Original Paper
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

Tetanus is a fatal disease caused by Clostridium tetani infections. To prevent infections, a toxoid vaccine, developed almost a century ago, is routinely used in humans and animals. The vaccine is listed in the World Health Organisation list of Essential Medicines and can be produced and administered very cheaply in the developing world for less than one US Dollar per dose. Recent developments in both analytical tools and frameworks for systems biology provide industry with an opportunity to gain a deeper understanding of the parameters that determine C. tetani virulence and physiological behaviour in bioreactors. Here, we compared a traditional fermentation process with a fermentation medium supplemented with five heavily consumed amino acids. The experiment demonstrated that amino acid catabolism plays a key role in the virulence of C. tetani. The addition of the five amino acids favoured growth, decreased toxin production and changed C. tetani morphology. Using time-course transcriptomics, we created a “fermentation map”, which shows that the tetanus toxin transcriptional regulator BotR, P21 and the tetanus toxin gene was downregulated. Moreover, this in-depth analysis revealed potential genes that might be involved in C. tetani virulence regulation. We observed differential expression of genes related to cell separation, surface/cell adhesion, pyrimidine biosynthesis and salvage, flagellar motility, and prophage genes. Overall, the fermentation map shows that, mediated by free amino acid concentrations, virulence in C. tetani is regulated at the transcriptional level and affects a plethora of metabolic functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Afshar M, Raju M, Ansell D, Bleck TP (2011) Narrative review: Tetanus-a health threat after natural disasters in developing countries. Ann Intern Med 154:329–335. https://doi.org/10.7326/0003-4819-154-5-201103010-00007

    Article  PubMed  Google Scholar 

  2. Aubry A, Hussack G, Chen W, KuoLee R, Twine SM, Fulton KM, Foote S, Carrillo CD, Tanha J, Logan SM (2012) Modulation of toxin production by the flagellar regulon in Clostridium difficile. Infect Immun 80:3521–3532. https://doi.org/10.1128/iai.00224-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Baban ST, Kuehne SA, Barketi-Klai A, Cartman ST, Kelly ML, Hardie KR, Kansau I, Collignon A, Minton NP (2013) The role of flagella in Clostridium difficile pathogenesis: comparison between a non-epidemic and an epidemic strain. PLoS ONE 8:e73026. https://doi.org/10.1371/journal.pone.0073026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Barker HA (1981) Amino acid degradation by anaerobic bacteria. Annu Rev Biochem 50:23–40. https://doi.org/10.1146/annurev.bi.50.070181.000323

    Article  CAS  PubMed  Google Scholar 

  5. Binz T, Rummel A (2009) Cell entry strategy of clostridial neurotoxins. J Neurochem 109:1584–1595. https://doi.org/10.1111/j.1471-4159.2009.06093.x

    Article  CAS  PubMed  Google Scholar 

  6. Bizzini B (1979) Tetanus toxin. Microbiol Rev 43:224–240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Blum FC, Chen C, Kroken AR, Barbieri JT (2012) Tetanus toxin and botulinum toxin a utilize unique mechanisms to enter neurons of the central nervous system. Infect Immun 80:1662–1669. https://doi.org/10.1128/IAI.00057-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Bonis M, Ecobichon C, Guadagnini S, Prévost MC, Boneca IG (2010) A M23B family metallopeptidase of Helicobacter pylori required for cell shape, pole formation and virulence. Mol Microbiol 78:809–819. https://doi.org/10.1111/j.1365-2958.2010.07383.x

    Article  CAS  PubMed  Google Scholar 

  9. Brook I (2008) Current concepts in the management of Clostridium tetani infection. Expert Rev Anti Infect Ther 6:327–336. https://doi.org/10.1586/14787210.6.3.327

    Article  CAS  PubMed  Google Scholar 

  10. Bruggemann H, Baumer S, Fricke WF, Wiezer A, Liesegang H, Decker I, Herzberg C, Martinez-Arias R, Merkl R, Henne A, Gottschalk G (2003) The genome sequence of Clostridium tetani, the causative agent of tetanus disease. Proc Natl Acad Sci 100:1316–1321. https://doi.org/10.1073/pnas.0335853100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Buckel W, Barker HA (1974) Two pathways of glutamate fermentation by anaerobic bacteria. J Bacteriol 117:1248–1260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Capra EJ, Laub MT (2012) Evolution of two-component signal transduction systems. Annu Rev Microbiol 66:325–347. https://doi.org/10.1146/annurev-micro-092611-150039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Carter GP, Cheung JK, Larcombe S, Lyras D (2014) Regulation of toxin production in the pathogenic clostridia. Mol Microbiol 91:221–231. https://doi.org/10.1111/mmi.12469

    Article  CAS  PubMed  Google Scholar 

  14. Chai Y, Norman T, Kolter R, Losick R (2010) An epigenetic switch governing daughter cell separation in Bacillus subtilis. Genes Dev 24:754–765. https://doi.org/10.1101/gad.1915010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Chan ACK, Blair KM, Liu Y, Frirdich E, Gaynor EC, Tanner ME, Salama NR, Murphy MEP (2015) Helical shape of Helicobacter pylori requires an atypical glutamine as a zinc ligand in the carboxypeptidase csd4. J Biol Chem 290:3622–3638. https://doi.org/10.1074/jbc.M114.624734

    Article  CAS  PubMed  Google Scholar 

  16. Chen C, Baldwin MR, Barbieri JT (2008) Molecular basis for tetanus toxin coreceptor interactions. Biochemistry 47:7179–7186. https://doi.org/10.1021/bi800640y

    Article  CAS  PubMed  Google Scholar 

  17. Cheung JK, Keyburn AL, Carter GP, Lanckriet AL, Van Immerseel F, Moore RJ, Rood JI (2010) The VirSR two-component signal transduction system regulates NetB toxin production in Clostridium perfringens. Infect Immun 78:3064–3072. https://doi.org/10.1128/IAI.00123-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Clifton CE (1942) The utilization of amino acids and related compounds by Clostridium tetani. J Bacteriol 44:179–183. https://doi.org/10.1128/jb.44.2.179-183.1942

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Cohen JE, Wang R, Shen RF, Wu WW, Keller JE (2017) Comparative pathogenomics of Clostridium tetani. PLoS ONE. https://doi.org/10.1371/journal.pone.0182909

    Article  PubMed  PubMed Central  Google Scholar 

  20. Connan C, Brueggemann H, Mazuet C, Raffestin S, Cayet N, Popoff MR (2012) Two-component systems are involved in the regulation of botulinum neurotoxin synthesis in clostridium botulinum type a strain Hall. PLoS ONE 7:e41848. https://doi.org/10.1371/journal.pone.0041848

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Connan C, Denève C, Mazuet C, Popoff MR (2013) Regulation of toxin synthesis in Clostridium botulinum and Clostridium tetani. Toxicon 75:90–100. https://doi.org/10.1016/j.toxicon.2013.06.001

    Article  CAS  PubMed  Google Scholar 

  22. Cook TM, Protheroe RT, Handel JM (2001) Tetanus: a review of the literature. Br J Anaesth 87:477–487. https://doi.org/10.1093/bja/87.3.477

    Article  CAS  PubMed  Google Scholar 

  23. Cruz-Morales P, Orellana CA, Moutafis G, Moonen G, Rincon G, Nielsen LK, Marcellin E (2019) Revisiting the evolution and taxonomy of Clostridia, a phylogenomic update. Genome Biol Evol 11:2035–2044. https://doi.org/10.1093/gbe/evz096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Demain AL, George S, Kole M, Gerson DF, Fang A (2007) Tetanus toxin production in soy-based medium: nutritional studies and scale-up into small fermentors. Lett Appl Microbiol 45:635–638. https://doi.org/10.1111/j.1472-765X.2007.02238.x

    Article  CAS  PubMed  Google Scholar 

  25. Dineen SS, McBride SM, Sonenshein AL (2010) Integration of metabolism and virulence by Clostridium difficile CodY. J Bacteriol 192:5350–5362. https://doi.org/10.1128/JB.00341-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Dineen SS, Villapakkam AC, Nordman JT, Sonenshein AL (2007) Repression of Clostridium difficile toxin gene expression by CodY. Mol Microbiol 66:206–219. https://doi.org/10.1111/j.1365-2958.2007.05906.x

    Article  CAS  PubMed  Google Scholar 

  27. Dingle TC, Mulvey GL, Armstrong GD (2011) Mutagenic analysis of the clostridium difficile flagellar proteins, FliC and FliD, and their contribution to virulence in hamsters. Infect Immun 79:4061–4067. https://doi.org/10.1128/iai.05305-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Elsden SR, Hilton MG (1978) Volatile acid production from threonine, valine, leucine and isoleucine by clostridia. Arch Microbiol 117:165–172. https://doi.org/10.1007/BF00402304

    Article  CAS  PubMed  Google Scholar 

  29. Ercoli G, Tani C, Pezzicoli A, Vacca I, Martinelli M, Pecetta S, Petracca R, Rappuoli R, Pizza M, Norais N, Soriani M, Aricò B (2015) Lytm proteins play a crucial role in cell separation, outer membrane composition, and pathogenesis in nontypeable Haemophilus influenzae. MBio. https://doi.org/10.1128/mBio.02575-14

    Article  PubMed  PubMed Central  Google Scholar 

  30. Fagerlund A, Dubois T, Økstad OA, Verplaetse E, Gilois N, Bennaceur I, Perchat S, Gominet M, Aymerich S, Kolstø AB, Lereclus D, Gohar M (2014) SinR controls enterotoxin expression in Bacillus thuringiensis biofilms. PLoS ONE. https://doi.org/10.1371/journal.pone.0087532

    Article  PubMed  PubMed Central  Google Scholar 

  31. Fisek NH, Mueller JH, Miller PA (1954) Muscle extractives in the production of tetanus toxin. J Bacteriol 67:329–334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Garavaglia M, Rossi E, Landini P (2012) The pyrimidine nucleotide biosynthetic pathway modulates production of biofilm determinants in Escherichia coli. PLoS ONE. https://doi.org/10.1371/journal.pone.0031252

    Article  PubMed  PubMed Central  Google Scholar 

  33. Girinathan BP, Ou J, Dupuy B, Govind R (2018) Pleiotropic roles of Clostridium difficile sin locus. PLoS Pathog. https://doi.org/10.1371/journal.ppat.1006940

    Article  PubMed  PubMed Central  Google Scholar 

  34. Govind R, Vediyappan G, Rolfe RD, Dupuy B, Fralick JA (2009) Bacteriophage-mediated toxin gene regulation in Clostridium difficile. J Virol 83:12037–12045. https://doi.org/10.1128/jvi.01256-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Grumelli C, Verderio C, Pozzi D, Rossetto O, Montecucco C, Matteoli M (2005) Internalization and mechanism of action of clostridial toxins in neurons. Neurotoxicology 26:761–767. https://doi.org/10.1016/j.neuro.2004.12.012

    Article  CAS  PubMed  Google Scholar 

  36. Hernández F, Rodríguez E (1993) The swarming phenomenon of Clostridium tetani. Rev Biol Trop 41:857–859

    PubMed  Google Scholar 

  37. Herreros J, Lalli G, Schiavo G (2015) C-terminal half of tetanus toxin fragment C is sufficient for neuronal binding and interaction with a putative protein receptor. Biochem J 347:199–204. https://doi.org/10.1042/bj3470199

    Article  Google Scholar 

  38. Herreros J, Ng T, Schiavo G (2001) Lipid rafts act as specialized domains for tetanus toxin binding and internalization into neurons. Mol Biol Cell 12:2947–2960. https://doi.org/10.1091/mbc.12.10.2947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Hoeniger JF, Tauschel HD (1974) Sequence of structural changes in cultures of Clostridium tetani grown on a solid medium. J Med Microbiol 7:425–432. https://doi.org/10.1099/00222615-7-4-425

    Article  CAS  PubMed  Google Scholar 

  40. de Hoon MJL, Imoto S, Nolan J, Miyano S (2004) Open source clustering software. Bioinformatics 20:1453–1454. https://doi.org/10.1093/bioinformatics/bth078

    Article  CAS  PubMed  Google Scholar 

  41. Huang DW, Sherman BT, Lempicki RA (2009a) Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res 37:1–13. https://doi.org/10.1093/nar/gkn923

    Article  CAS  Google Scholar 

  42. Huang DW, Sherman BT, Lempicki RA (2009b) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 4:44–57. https://doi.org/10.1038/nprot.2008.211

    Article  CAS  Google Scholar 

  43. Ichimura T, Yamazoe M, Maeda M, Wada C, Hiraga S (2002) Proteolytic activity of YibP protein in Escherichia coli. J Bacteriol 184:2595–2602. https://doi.org/10.1128/JB.184.10.2595-2602.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Justice SS, Hunstad DA, Cegelski L, Hultgren SJ (2008) Morphological plasticity as a bacterial survival strategy. Nat Rev Microbiol 6:162–168. https://doi.org/10.1038/nrmicro1820

    Article  CAS  PubMed  Google Scholar 

  45. Kaufman L, Humphries JC (1958) Studies of the nutritional requirements of Clostridium tetani. I. A chemically defined medium. Appl Microbiol 6:311–315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Li J, Ma M, Sarker MR, McClane BA (2013) Cody is a global regulator of virulence-associated properties for clostridium perfringens type D strain CN3718. MBio. https://doi.org/10.1128/mBio.00770-13

    Article  PubMed  PubMed Central  Google Scholar 

  47. Liao Y, Smyth GK, Shi W (2013) The subread aligner: fast, accurate and scalable read mapping by seed-and-vote. Nucleic Acids Res. https://doi.org/10.1093/nar/gkt214

    Article  PubMed  PubMed Central  Google Scholar 

  48. Licona-Cassani C, Steen JA, Zaragoza NE, Moonen G, Moutafis G, Hodson MP, Power J, Nielsen LK, Marcellin E (2016) Tetanus toxin production is triggered by the transition from amino acid consumption to peptides. Anaerobe 41:113–124. https://doi.org/10.1016/j.anaerobe.2016.07.006

    Article  CAS  PubMed  Google Scholar 

  49. Ma M, Vidal J, Saputo J, McClane BA, Uzal F (2011) The VirS/VirR two-component system regulates the anaerobic cytotoxicity, intestinal pathogenicity, and enterotoxemic lethality of Clostridium perfringens type C isolate CN3685. MBio 2:e00338-e410. https://doi.org/10.1128/mBio.00338-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Mandic-Mulec I, Doukhan L, Smith I (1995) The Bacillus subtilis SinR protein is a repressor of the key sporulation gene spo0A. J Bacteriol 177:4619–4627. https://doi.org/10.1128/jb.177.16.4619-4627.1995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Marvaud JC, Eisel U, Binz T, Niemann H, Popoff MR (1998) TetR is a positive regulator of the tetanus toxin gene in Clostridium tetani and is homologous to BotR. Infect Immun 66:5698–5702. https://doi.org/10.1177/0022034510375281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. McCarthy DJ, Chen Y, Smyth GK (2012) Differential expression analysis of multifactor RNA-Seq experiments with respect to biological variation. Nucleic Acids Res 40:4288–4297. https://doi.org/10.1093/nar/gks042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Mead GC (2009) The amino acid-fermenting clostridia. J Gen Microbiol 67:47–56. https://doi.org/10.1099/00221287-67-1-47

    Article  Google Scholar 

  54. Mellanby J (1968) The effect of glutamate on toxin production by Clostridium tetani. J Gen Microbiol 54:77–82. https://doi.org/10.1099/00221287-54-1-77

    Article  CAS  PubMed  Google Scholar 

  55. Merrigan MM, Venugopal A, Roxas JL, Anwar F, Mallozzi MJ, Roxas BAP, Gerding DN, Viswanathan VK, Vedantam G (2013) Surface-Layer Protein A (SlpA) is a major contributor to host-cell adherence of clostridium difficile. PLoS ONE. https://doi.org/10.1371/journal.pone.0078404

    Article  PubMed  PubMed Central  Google Scholar 

  56. Miller PA, Mueller JH (1956) Essential role of histidine peptides in tetanus toxin production. J Biol Chem 223:185–194

    CAS  PubMed  Google Scholar 

  57. Mueller JH, Miller PA (1954) Variable factors influencing the production of tetanus toxin. J Bacteriol 67:271–277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Mueller JH, Miller PA (1955) Separation from tryptic digests of casein of some acid-labile components essential in tetanus toxin formation. J Bacteriol 69:634–642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Newman JA, Rodrigues C, Lewis RJ (2013) Molecular basis of the activity of SinR Protein, the master regulator of biofilm formation in bacillus subtilis. J Biol Chem 288:10766–10778. https://doi.org/10.1074/jbc.M113.455592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Ohtani K (2016) Gene regulation by the VirS/VirR system in Clostridium perfringens. Anaerobe 41:5–9. https://doi.org/10.1016/j.anaerobe.2016.06.003

    Article  CAS  PubMed  Google Scholar 

  61. Ohtani K, Kawsar HI, Okumura K, Hayashi H, Shimizu T (2003) The VirR/VirS regulatory cascade affects transcription of plasmid-encoded putative virulence genes in Clostridium perfringens strain 13. FEMS Microbiol Lett 222:137–141. https://doi.org/10.1016/S0378-1097(03)00255-6

    Article  CAS  PubMed  Google Scholar 

  62. Osterman IA, Dikhtyar YY, Bogdanov AA, Dontsova OA, Sergiev PV (2015) Regulation of flagellar gene expression in Bacteria. Biochem 80:1447–1456. https://doi.org/10.1134/S000629791511005X

    Article  CAS  Google Scholar 

  63. Pflughoeft KJ, Sumby P, Koehler TM (2011) Bacillus anthracis sin locus and regulation of secreted proteases. J Bacteriol 192:631–639. https://doi.org/10.1128/JB.01083-10

    Article  CAS  Google Scholar 

  64. Porfírio Z, Prado SM, Vancetto MDC, Fratelli F, Alves EW, Raw I, Fernandes BL, Camargo ACM, Lebrun I (1997) Specific peptides of casein pancreatic digestion enhance the production of tetanus toxin. J Appl Microbiol 83:678–684. https://doi.org/10.1046/j.1365-2672.1997.00299.x

    Article  PubMed  Google Scholar 

  65. Raffestin S, Dupuy B, Marvaud JC, Popoff MR (2004) BotR/A and TetR are alternative RNA polymerase sigma factors controlling the expression of the neurotoxin and associated protein genes in Clostridium botulinum type A and Clostridium tetani. Mol Microbiol 55:235–249. https://doi.org/10.1111/j.1365-2958.2004.04377.x

    Article  CAS  Google Scholar 

  66. Rédei GP (2008) Two-component regulatory systems. Encyclopedia of genetics proteomics and informatics. American Society of Microbiology, Genomics, pp 2052–2052

    Chapter  Google Scholar 

  67. Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, Smyth GK (2015) limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. https://doi.org/10.1093/nar/gkv007

    Article  PubMed  PubMed Central  Google Scholar 

  68. Robinson MD, McCarthy DJ, Smyth GK (2009) edgeR: a bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26:139–140. https://doi.org/10.1093/bioinformatics/btp616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Saldanha AJ (2004) Java treeview—extensible visualization of microarray data. Bioinformatics 20:3246–3248. https://doi.org/10.1093/bioinformatics/bth349

    Article  CAS  PubMed  Google Scholar 

  70. Sekulovic O, Meessen-Pinard M, Fortier L-C (2011) Prophage-stimulated toxin production in Clostridium difficile NAP1/027 lysogens. J Bacteriol 193:2726–2734. https://doi.org/10.1128/JB.00787-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Sonenshein AL (2005) CodY, a global regulator of stationary phase and virulence in Gram-positive bacteria. Curr Opin Microbiol 8:203–207. https://doi.org/10.1016/j.mib.2005.01.001

    Article  CAS  PubMed  Google Scholar 

  72. Stenz L, Francois P, Whiteson K, Wolz C, Linder P, Schrenzel J (2011) The CodY pleiotropic repressor controls virulence in gram-positive pathogens. FEMS Immunol Med Microbiol 62:123–139. https://doi.org/10.1111/j.1574-695X.2011.00812.x

    Article  CAS  PubMed  Google Scholar 

  73. Sutton JM, Chow-Worn O, Spaven L, Silman NJ, Hallis B, Shone CC (2001) Tyrosine-1290 of tetanus neurotoxin plays a key role in its binding to gangliosides and functional binding to neurones. FEBS Lett 493:54–59. https://doi.org/10.1016/S0014-5793(01)02273-6

    Article  Google Scholar 

  74. Syed KA, Beyhan S, Correa N, Queen J, Liu J, Peng F, Satchell KJF, Yildiz F, Klose KE (2009) The Vibrio cholerae flagellar regulatory hierarchy controls expression of virulence factors. J Bacteriol 191:6555–6570. https://doi.org/10.1128/JB.00949-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Tanaka Y, Teramoto H, Inui M (2015) Regulation of the expression of de novo pyrimidine biosynthesis genes in Corynebacterium glutamicum. J Bacteriol 197:3307–3316. https://doi.org/10.1128/jb.00395-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Tsunashima I, Sato K, Shoji K, Yoneda M, Amano T (1964) Excess supplementation of certain amino acids to medium and its inhibitory effect on toxin production by Clostridium Tetani. Biken J 7:161–163

    CAS  PubMed  Google Scholar 

  77. Uehara T, Parzych KR, Dinh T, Bernhardt TG (2010) Daughter cell separation is controlled by cytokinetic ring-activated cell wall hydrolysis. EMBO J 29:1412–1422. https://doi.org/10.1038/emboj.2010.36

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Valgepea K, Loi KQ, Behrendorff JB, Lemgruber R de SP, Plan M, Hodson MP, Köpke M, Nielsen LK, Marcellin E (2017) Arginine deiminase pathway provides ATP and boosts growth of the gas-fermenting acetogen Clostridium autoethanogenum. Metab Eng 41:202–211. 10.1016/j.ymben.2017.04.007

  79. Wagner PL, Waldor MK (2002) Bacteriophage control of bacterial virulence. Infect Immun 70:3985–3993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. World Health Organization (2017) Tetanus vaccines: WHO position paper – February 2017

  81. Yang HJ, Bogomolnaya L, McClelland M, Andrews-Polymenis H (2017) De novo pyrimidine synthesis is necessary for intestinal colonization of Salmonella typhimurium in chicks. PLoS ONE. https://doi.org/10.1371/journal.pone.0183751

    Article  PubMed  PubMed Central  Google Scholar 

  82. Yang LC, Gan YL, Yang LY, Le JB, Tang JL (2018) Peptidoglycan hydrolysis mediated by the amidase AmiC and its LytM activator NlpD is critical for cell separation and virulence in the phytopathogen Xanthomonas campestris. Mol Plant Pathol 19:1705–1718. https://doi.org/10.1111/mpp.12653

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Zhang Z, Dahlsten E, Korkeala H, Lindström M (2014) Positive regulation of botulinum neurotoxin gene expression by CodY in Clostridium botulinum ATCC 3502. Appl Environ Microbiol 80:7651–7658. https://doi.org/10.1128/AEM.02838-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the Queensland node of Metabolomics Australia at The University of Queensland, an NCRIS initiative funded through Bioplatforms Australia Pty Ltd. This research was funded by Zoetis and the Australian Government through the Australian Research Council’s Linkage projects funding scheme (Project LP150100087). The authors would like to thank Jennifer A. Steen for assistance in library preparation for RNA seq.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Esteban Marcellin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 10250 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Orellana, C.A., Zaragoza, N.E., Licona-Cassani, C. et al. Time-course transcriptomics reveals that amino acids catabolism plays a key role in toxinogenesis and morphology in Clostridium tetani. J Ind Microbiol Biotechnol 47, 1059–1073 (2020). https://doi.org/10.1007/s10295-020-02330-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-020-02330-3

Keywords

Navigation