Skip to main content

Advertisement

Log in

Enhanced Efficiency of Asymmetric Wireless Power Transmission Using Defects in 2D Magnetic Metamaterials

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

In this work, we investigate an asymmetric wireless power transfer (WPT) system constructed by a big transmitter (Tx) and a small receiver (Rx) operated at 13.56 MHz. Because of the high radius ratio between Tx and Rx coils, the efficiency of asymmetric WPT is lower than the symmetric one. Therefore, a compact metasurface placed between the Tx and Rx is used to enhance the efficiency of WPT. To further improve efficiency, we create a nonuniform metasurface by controlling the resonant frequency of the unit cells. This defect with higher resonant frequency than others is easily formed by tuning the external capacitor. This modified metasurface can strongly localize the magnetic field into the defect region at a deep subwavelength scale of 2.3λ × 10−3and is, therefore, suitable for coupling to the small Rx of asymmetric WPT. There is an optimum position of metasurface for achieving the highest efficiency when the couplings between the defect, Tx, and Rx coils are appropriate. By using the optimization approach, the efficiency of the WPT increases significantly from 9.8% to 60.2% with a nonuniform metasurface. The performances of WPT at various locations of defect and receiver are also considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. M. Song, P. Belov, and P. Kapitanova, Appl. Phys. Rev. 4, 021102 (2017).

    Article  Google Scholar 

  2. W.C. Harris, D.D. Stancil, and D.S. Ricketts, Appl. Phys. Lett. 114, 143903 (2019).

    Article  Google Scholar 

  3. N. Ha-Van, and C. Seo, IEEE Tran. Ind. Electron. 65, 1358 (2018).

    Article  Google Scholar 

  4. I. Mayordomo, T. Drager, P. Spies, J. Bernhard, and A. Pflaum, Proc. IEEE 101, 1032 (2013).

    Article  Google Scholar 

  5. X. Wei, Z. Wang, and H. Dai, Energies 7, 4316 (2014).

    Article  Google Scholar 

  6. J. Park, C. Park, Y. Shin, D. Kim, B. Park, J. Cho, J. Choi, and S. Ahn, Appl. Phys. Lett. 114, 203902 (2019).

    Article  Google Scholar 

  7. A. Markvart, M. Song, S. Glybovski, P. Belov, C. Simovski, and P. Kapitanova, IEEE Access 8, 40224 (2020).

    Article  Google Scholar 

  8. D. Brizi, J.P. Stang, A. Monorchio, and G. Lazzi, IEEE Trans. Microw. Theory Techn. (2020). https://doi.org/10.1109/TMTT.2020.2983145.

    Article  Google Scholar 

  9. J. Garnica, R.A. Chiga, and J. Lin, Proc. IEEE 101, 1321 (2013).

    Article  Google Scholar 

  10. M. Xia and S. Aissa, IEEE Trans. Signal Process. 63, 2835 (2015).

    Article  Google Scholar 

  11. A.M. Jawad, R. Nordin, S.K. Gharghan, H.M. Jawad, and M. Ismail, Energies 10, 1022 (2017).

    Article  Google Scholar 

  12. F. Pijl, P. Bauer, and M. Castilla, IEEE Trans. Ind. Electron. 60, 382 (2013).

    Article  Google Scholar 

  13. A. Kurs, A. Karalis, R. Moffatt, J.D. Joannopoulos, P. Fisher, and M. Soljacic, Science 317, 83 (2007).

    Article  CAS  Google Scholar 

  14. S.Y.R. Hui, W. Zhong, and C.K. Lee, IEEE Trans. Power Electron. 29, 4500 (2014).

    Article  Google Scholar 

  15. H.H. Lee, S.H. Kang, and C.W. Jung, IEEE Microw. Wireless Compon. Lett. 28, 269 (2018).

    Article  Google Scholar 

  16. S. Assawaworrarit, X. Yu, and S. Fan, Nature 546, 387 (2017).

    Article  CAS  Google Scholar 

  17. C. Yang, Y. He, H. Qu, J. Wu, Z. Hou, Z. Lin, and C. Cai, AIP Adv. 9, 025206 (2019).

    Article  Google Scholar 

  18. T.H. Kim, G.H. Yun, and W.Y. Lee, IEEE Trans. Microw. Theory Techn. 66, 3443 (2018).

    Article  Google Scholar 

  19. B. H. Choi, and J. H. Lee, Int. J. Antenn. Propag. 8247476 (2016).

  20. S. Hekal, A.B. Abdel-Rahman, A. Allam, H. Jia, A. Barakat, and R.K. Pokharel, IEICE Electron. Expr 13, 21 (2016).

    Article  Google Scholar 

  21. V.G. Veselago, Sov. Phys. Uspekhi 10, 509 (1968).

    Article  Google Scholar 

  22. J.B. Pendry, Phys. Rev. Lett. 85, 3966 (2000).

    Article  CAS  Google Scholar 

  23. W.J. Padilla, D.N. Basov, and D.R. Smith, Mater. Today 9, 28 (2006).

    Article  CAS  Google Scholar 

  24. J.B. Pendry, L. Martin-Moreno, and F.J. Garcia-Vidal, Science 305, 847 (2004).

    Article  CAS  Google Scholar 

  25. C.M. Soukoulis and M. Wegener, Nat. Photonics 5, 523 (2011).

    Article  CAS  Google Scholar 

  26. S.A. Cummer, J. Christensen, and A. Alu, Nat. Rev. Mater. 1, 1 (2016).

    Article  Google Scholar 

  27. A. Radkovskaya, P. Petrov, S. Kiriushechkina, A. Satskiy, M. Ivanyukovich, A. Vakulenko, V. Prudnikov, O. Kotelnikova, A. Korolev, and P. Zakharov, J. Magn. Magn. Mater. 459, 187 (2018).

    Article  CAS  Google Scholar 

  28. C.J. Stevens, IEEE Trans. Power Electron. 30, 6182 (2015).

    Article  Google Scholar 

  29. T.S. Pham, H.N. Bui, and J.W. Lee, J. Magn. Magn. Mater. 485, 126 (2019).

    Article  CAS  Google Scholar 

  30. B. Wang, K.H. Teo, T. Nishino, W. Yerazunis, and J. Barnwell, Appl. Phys. Lett. 98, 254101 (2011).

    Article  Google Scholar 

  31. A.L.A.K. Ranaweera, T.P. Duong, and J.W. Lee, J. Appl. Phys. 116, 043914 (2014).

    Article  Google Scholar 

  32. T.S. Pham, A.K. Ranaweera, D.V. Ngo, and J.W. Lee, J. Phys. D: Appl. Phys. 50, 305102 (2017).

    Article  Google Scholar 

  33. W. Yang, S. Ho, and W. Fu, IEEE Access 8, 82700 (2020).

    Article  Google Scholar 

  34. A.L.A.K. Ranaweera, T.S. Pham, H.N. Bui, V. Ngo, and J.W. Lee, Sci. Rep. 9, 11735 (2019).

    Article  CAS  Google Scholar 

  35. T.P. Duong, and J.W. Lee, IEEE Microw. Wireless Compon. Lett. 21, 442 (2011).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Thanh Son Pham or Quang Minh Ngo.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest related to this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pham, T.S., Khuyen, B.X., Tung, B.S. et al. Enhanced Efficiency of Asymmetric Wireless Power Transmission Using Defects in 2D Magnetic Metamaterials. J. Electron. Mater. 50, 443–449 (2021). https://doi.org/10.1007/s11664-020-08586-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-020-08586-w

Keywords

Navigation