Skip to main content

Advertisement

Log in

DFT study of CO2 catalytic conversion by H2 over Ni13 cluster

  • Regular Article
  • Published:
Journal of Chemical Sciences Aims and scope Submit manuscript

Abstract

Understanding the mechanism and selectivity of CO2 catalytic conversion by H2 on a specific catalyst is of great significance in the context of renewable energy storage from a societal and technological point of view. In this paper, based on the density functional theory calculations, the possible reaction networks of CO2 hydrogenation on the Ni13 cluster are studied systematically. The adsorption energies of the reaction intermediates at various possible adsorption sites, the reaction energies and the activation energies of each elementary reaction are calculated. The results suggest that the adsorption properties of the CO2 and the intermediates on the Ni13 cluster are different from the specific crystal plane such as Ni(111) surface, and the intermediates are highly activated on the Ni13 surface. The most advantageous pathways for the production of HCOOH, CH3OH, and CH4 are determined, and the activation barrier of the corresponding rate-determining step is 1.63 eV, 1.55 eV, and 1.55 eV, respectively. This indicates that the Ni13 cluster has higher activity towards CO2 catalytic conversion compared with other catalysts such as Cu(111), Ni(111), and Pt/Ni(111) surface. Furthermore, the H3CO* hydrogenation or the dissociation is demonstrated to be the crucial step in determining the selectivity for CH3OH and CH4.

Graphic Abstract

The mechanism of CO2 hydrogenation on Ni13 cluster was determined by density functional theory calculation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Wu G, Zeng M, Peng L, Liu X, Li B and Duan J 2016 China’s new energy development: Status, constraints and reforms Renew. Sustain. Energy Rev. 53 885

    Google Scholar 

  2. Wang L, Chen W, Zhang D, Du Y, Amal R, Qiao S, Wu J and Yin Z 2019 Surface strategies for catalytic CO2 reduction: From two-dimensional materials to nanoclusters to single atoms Chem. Soc. Rev. 48 5310

    CAS  Google Scholar 

  3. Caldeira K and Wickett M E 2003 Anthropogenic carbon and ocean pH Nature 425 365

    CAS  PubMed  Google Scholar 

  4. Masson-Delmotte V, Kageyama M, Braconnot P, Charbit S, Krinner G, Ritz C, Guilyardi E, Jouzel J, Abe-Ouchi A, Crucifix M, Gladstone R M, Hewitt C D, Kitoh A, LeGrande A N, Marti O, Merkel U, Motoi T, Ohgaito R, Otto-Bliesner B, Peltier W R, Ross I, Valdes P J, Vettoretti G, Weber S L, Wolk F and Yu Y 2006 Past and future polar amplification of climate change: Climate model intercomparisons and ice-core constraints Clim. Dyn. 26 513

    Google Scholar 

  5. Aresta M and Dibenedetto A 2007 Utilisation of CO2 as a chemical feedstock: Opportunities and challenges Dalton Trans. 28 2975

    Google Scholar 

  6. Appel A M, Bercaw J E, Bocarsly A B, Dobbek H, DuBois D L, Dupuis M, Ferry J G, Fujita E, Hille R, Kenis P J A, Kerfeld C A, Morris R H, Peden C H F, Portis A R, Ragsdale S W, Rauchfuss T B, Reek J N H, Seefeldt L C, Thauer R K and Waldrop G L 2013 Frontiers, opportunities, and challenges in biochemical and chemical catalysis of CO2 fixation Chem. Rev. 113 6621

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Aresta M, Dibenedetto A and Angelini A 2014 Catalysis for the valorization of exhaust carbon: From CO2 to chemicals, materials, and fuels. Technological use of CO2 Chem. Rev. 114 1709

    CAS  PubMed  Google Scholar 

  8. Wang W-H, Himeda Y, Muckerman J T, Manbeck G F and Fujita E 2015 CO2 hydrogenation to formate and methanol as an alternative to photo- and electrochemical CO2 reduction Chem. Rev. 115 12936

    CAS  PubMed  Google Scholar 

  9. Boretti A 2013 Renewable hydrogen to recycle CO2 to methanol Int. J. Hydrog. Energy 38 1806

    CAS  Google Scholar 

  10. Atsonios K, Panopoulos K D and Kakaras E 2016 Thermocatalytic CO2 hydrogenation for methanol and ethanol production: Process improvements Int. J. Hydrog. Energy 41 792

    CAS  Google Scholar 

  11. Tada S, Ikeda S, Shimoda N, Honma T, Takahashi M, Nariyuki A and Satokawa S 2017 Sponge Ni catalyst with high activity in CO2 methanation Int. J. Hydrog. Energy 42 30126

    CAS  Google Scholar 

  12. Zhou R, Rui N, Fan Z and Liu C-J 2016 Effect of the structure of Ni/TiO2 catalyst on CO2 methanation Int. J. Hydrog. Energy 41 22017

    CAS  Google Scholar 

  13. Li Y, Chan S H and Sun Q 2015 Heterogeneous catalytic conversion of CO2: A comprehensive theoretical review Nanoscale 7 8663

    CAS  PubMed  Google Scholar 

  14. Yang B, Liu C, Halder A, Tyo E C, Martinson A B F, Seifert S, Zapol P, Curtiss L A and Vajda S 2017 Copper cluster size effect in methanol synthesis from CO2 J. Phys. Chem. C 121 10406

    CAS  Google Scholar 

  15. Ye J, Liu C, Mei D and Ge Q 2013 Active oxygen vacancy site for methanol synthesis from CO2 hydrogenation on In2O3(110): A DFT study ACS Catal. 3 1296

    CAS  Google Scholar 

  16. Iablokov V, Beaumont S K, Alayoglu S, Pushkarev V V, Specht C, Gao J, Alivisatos A P, Kruse N and Somorjai G A 2012 Size-controlled model Co nanoparticle catalysts for CO2 hydrogenation: Synthesis, characterization, and catalytic reactions Nano Lett. 12 3091

    CAS  PubMed  Google Scholar 

  17. Miao B, Ma S S K, Wang X, Su H and Chan S H 2016 Catalysis mechanisms of CO2 and CO methanation Catal. Sci. Technol. 6 4048

    CAS  Google Scholar 

  18. Yang Y, Evans J, Rodriguez J A, White M G and Liu P 2010 Fundamental studies of methanol synthesis from CO2 hydrogenation on Cu(111), Cu clusters, and Cu/ZnO(0001) Phys. Chem. Chem. Phys. 12 9909

    CAS  PubMed  Google Scholar 

  19. Ou Z, Qin C, Niu J, Zhang L and Ran J 2019 A comprehensive DFT study of CO2 catalytic conversion by H2 over Pt-doped Ni catalysts Int. J. Hydrog. Energy 44 819

    CAS  Google Scholar 

  20. Tang Q, Shen Z, Russell C K and Fan M 2018 Thermodynamic and kinetic study on carbon dioxide hydrogenation to methanol over a Ga3Ni5(111) surface: The effects of step edge J. Phys. Chem. C 122 315

    CAS  Google Scholar 

  21. Nizio M, Albarazi A, Cavadias S, Amouroux J, Galvez M E and Da Costa P 2016 Hybrid plasma-catalytic methanation of CO2 at low temperature over ceria zirconia supported Ni catalysts Int. J. Hydrog. Energy 41 11584

    CAS  Google Scholar 

  22. Ren J, Guo H, Yang J, Qin Z, Lin J and Li Z 2015 Insights into the mechanisms of CO2 methanation on Ni(111) surfaces by density functional theory Appl. Surf. Sci. 351 504

    CAS  Google Scholar 

  23. Peng G, Sibener S J, Schatz G C and Mavrikakis M 2012 CO2 hydrogenation to formic acid on Ni(110) Surf. Sci. 606 1050

    CAS  Google Scholar 

  24. Peng G, Sibener S J, Schatz G C, Ceyer S T and Mavrikakis M 2012 CO2 hydrogenation to formic acid on Ni(111) J. Phys. Chem. C 116 3001

    CAS  Google Scholar 

  25. Rodriguez J A, Evans J, Feria L, Vidal A B, Liu P, Nakamura K and Illas F 2013 CO2 hydrogenation on Au/TiC, Cu/TiC, and Ni/TiC catalysts: Production of CO, methanol, and methane J. Catal. 307 162

    CAS  Google Scholar 

  26. Ye R-P, Li Q, Gong W, Wang T, Razink J J, Lin L, Qin Y-Y, Zhou Z, Adidharma H, Tang J, Russell A G, Fan M and Yao Y-G 2020 High-performance of nanostructured Ni/CeO2 catalyst on CO2 methanation Appl. Catal. B: Environ. 268 118474

    CAS  Google Scholar 

  27. Liu M-H, Chen H-A, Chen C-S, Wu J-H, Wu H-C and Yang C-M 2019 Tiny Ni particles dispersed in platelet SBA-15 materials induce high efficiency for CO2 methanation Nanoscale 11 20741

    CAS  PubMed  Google Scholar 

  28. Chen S, Chen X and Zhang H 2017 Probing the activity of Ni13, Cu13, and Ni12Cu clusters towards the ammonia decomposition reaction by density functional theory J. Mater. Sci. 52 3162

    CAS  Google Scholar 

  29. Chen S, Chen X and Zhang H 2017 Nanoscale size effect of octahedral nickel catalyst towards ammonia decomposition reaction Int. J. Hydrog. Energy 42 17122

    CAS  Google Scholar 

  30. 30.Chen X, Zhou J, Chen S and Zhang H 2018 Catalytic performance of M@Ni (M = Fe, Ru, Ir) core–shell nanoparticles towards ammonia decomposition for COx-free hydrogen production J. Nanopart. Res. 20 148

    Google Scholar 

  31. Ye J, Liu C-j, Mei D and Ge Q 2014 Methanol synthesis from CO2 hydrogenation over a Pd4/In2O3 model catalyst: A combined DFT and kinetic study J. Catal. 317 44

    CAS  Google Scholar 

  32. Gu X-K and Li W-X 2010 First-principles study on the origin of the different selectivities for methanol steam reforming on Cu(111) and Pd(111) J. Phys. Chem. C 114 21539

    CAS  Google Scholar 

  33. Saputro A G, Putra R I D, Maulana A L, Karami M U, Pradana M R, Agusta M K, Dipojono H K and Kasai H 2019 Theoretical study of CO2 hydrogenation to methanol on isolated small Pdx clusters J. Energy Chem. 35 79

    Google Scholar 

  34. Grigoryan V G and Springborg M 2001 A theoretical study of the structure of Ni clusters (NiN) Phys. Chem. Chem. Phys. 3 5135

    CAS  Google Scholar 

  35. Delley B 2000 From molecules to solids with the DMol3 approach J. Chem. Phys. 113 7756

    CAS  Google Scholar 

  36. Delley B 1990 An all-electron numerical method for solving the local density functional for polyatomic molecules J. Chem. Phys. 92 508

    CAS  Google Scholar 

  37. Perdew J P, Burke K and Ernzerhof M 1996 Generalized gradient approximation made simple Phys. Rev. Lett. 77 3865

    CAS  Google Scholar 

  38. Halgren T A and Lipscomb W N 1997 The synchronous-transit method for determining reaction pathways and locating molecular transition states Chem. Phys. Lett. 49 225

    Google Scholar 

  39. Govind N, Petersen M, Fitzgerald G, King-Smith D and Andzelm J 2003 A generalized synchronous transit method for transition state location Comput. Mater. Sci. 28 250

    CAS  Google Scholar 

  40. Nerlov J, Sckerl S, Wambach J and Chorkendorff I 2000 Methanol synthesis from CO2, CO and H2 over Cu(100) and Cu(100) modified by Ni and Co Appl. Catal. A: Gen. 191 97

    CAS  Google Scholar 

  41. Zhou M and Liu B 2015 DFT investigation on the competition of the water–gas shift reaction versus methanation on clean and potassium-modified nickel(111) surfaces ChemCatChem 7 3928

    CAS  Google Scholar 

  42. Zhu Y-A, Chen D, Zhou X-G and Yuan W-K 2009 DFT studies of dry reforming of methane on Ni catalyst Catal. Today 148 260

    CAS  Google Scholar 

  43. Wang Y, Su Y, Zhu M and Kang L 2015 Mechanism of CO methanation on the Ni4/γ-Al2O3 and Ni3Fe/γ-Al2O3 catalysts: A density functional theory study Int. J. Hydrog. Energy 40 8864

    CAS  Google Scholar 

  44. Santiago-Rodríguez Y, Barreto-Rodríguez E and Curet-Arana M C 2016 Quantum mechanical study of CO2 and CO hydrogenation on Cu(111) surfaces doped with Ga, Mg, and Ti J. Mol. Catal. A: Chem. 423 319

    Google Scholar 

  45. Zhang R, Wang B, Liu H and Ling L 2011 Effect of surface hydroxyls on CO2 hydrogenation over Cu/γ-Al2O3 catalyst: A theoretical study J. Phys. Chem. C 115 19811

    CAS  Google Scholar 

  46. Rasmussen P B, Holmblad P M, Askgaard T, Ovesen C V, Stoltze P, Nørskov J K and Chorkendorff I 1994 Methanol synthesis on Cu(100) from a binary gas mixture of CO2 and H2 Catal. Lett. 26 373

    CAS  Google Scholar 

  47. Liu L, Yao H, Jiang Z and Fang T 2018 Theoretical study of methanol synthesis from CO2 hydrogenation on PdCu3(111) surface Appl. Surf. Sci. 451 333

    CAS  Google Scholar 

  48. Askgaard T S, Nørskov J K, Ovesen C V and Stoltze P 1995 A kinetic model of methanol synthesis J. Catal. 156 229

    CAS  Google Scholar 

  49. Zhang M, Yang K, Zhang X and Yu Y 2014 Effect of Ni(111) surface alloying by Pt on partial oxidation of methane to syngas: A DFT study Surf. Sci. 630 236

    CAS  Google Scholar 

  50. Li K, Yin C, Zheng Y, He F, Wang Y, Jiao M, Tang H and Wu Z 2016 DFT study on the methane synthesis from syngas on a cerium-doped Ni(111) surface J. Phys. Chem. C 120 23030

    CAS  Google Scholar 

  51. Zhang X, Liu J-X, Zijlstra B, Filot I A W, Zhou Z, Sun S and Hensen E J M 2018 Optimum Cu nanoparticle catalysts for CO2 hydrogenation towards methanol Nano Energy 43 200

    Google Scholar 

Download references

Acknowledgements

This work is supported by the Applied Basic Research Project of Science and Technology Department of Sichuan Province (2020YJ0418), the Youth Science and Technology Innovation Team of Southwest Petroleum University (2018CXTD05), and the Open Fund of State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation of Southwest Petroleum University (PLN201925). We acknowledge the National Supercomputing Center in Shenzhen for providing the computational resources and Materials Studio software.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qiang Ke or Xin Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ke, Q., Kang, L., Chen, X. et al. DFT study of CO2 catalytic conversion by H2 over Ni13 cluster. J Chem Sci 132, 151 (2020). https://doi.org/10.1007/s12039-020-01857-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12039-020-01857-3

Keywords

Navigation