Skip to main content

Advertisement

Log in

Airborne particles in city bus: concentrations, sources and simulated pulmonary solubility

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

PM10 and PM2.5 concentrations in Ljubljana city bus were monitored during entire shift, and individual particles were morphologically and chemically characterised in order to determine PM concentration variability, particle sources, solubility in simulated pulmonary environment and effects on human health. PM measurements revealed high mean PM10 (82.8 μg/m3) and PM2.5 (47 μg/m3), which were highest and most variable during rush hours with fluid traffic and lowest during traffic jams with standing vehicles. Individual particle analysis showed that airborne particles were dominated by metal-bearing phases, particularly small-sized (Cr,Mn,Zn)-bearing Fe-oxyhydroxides and Al-/Fe-Al-oxides, large (Fe,Cr,Ni)- and (Cu,Zn,Ni)-alloys, and small-sized Sb-sulphide and Ba-sulphate. Non-metallic phases were represented by (Ca,Mg)-carbonates, Al-silicates, Na-chloride and Ca-sulphate. Comparison with possible source materials (vehicle exhaust emissions, brake disc dust and road sediment) showed that primary sources of these metal-bearing phases were wear of brake discs, brake pads and tyres, and also wear of engine components and catalytic converters. Most non-metallic phases originated from resuspension of road sediment, containing road sanding materials, but also from emissions of burned fuel and lubricating oil (Ca-sulphate). Assessment of effects on human health indicated that mean PM concentrations, which significantly exceeded daily limit values, increased mortality (by 2–3%) and morbidity (by 7–8%) risk for bus drivers. Simplified PHREEQC calculations of airborne metal-bearing phase solubility in aqueous solutions simulating pulmonary environment showed that metallic Fe, Ba-sulphate, Sb-sulphide and Al-oxide, partly also Cu-bearing metal alloys, were soluble under reducing and oxidising conditions, but released metals were removed from solution by precipitation of stable secondary metal-bearing phases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

©OpenStreetMap contributors. Predominant wind directions, mean wind speed, mean temperature and mean relative humidity for the studied time period are based on data obtained by Slovenian Environment Agency (2019)

Fig. 2

taken from WHO (2006) and Official Gazette RS (2011), and daily limit values for PM2.5 are taken from WHO (2006)

Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Adams, H. S., Nieuwenhuijsen, M. J., & Colvile, R. N. (2001). Determinants of fine particle (PM2.5) personal exposure levels in transport microenvironments, London UK. Atmospheric Environment, 35, 4557–4566.

    Article  CAS  Google Scholar 

  • Adams, H. S., Nieuwenhuijsen, M. J., Colvile, R. N., Older, M. J., & Kendall, M. (2002). Assessment of road users’ elemental carbon personal exposure levels, London, UK. Atmospheric Environment, 36, 5335–5342.

    Article  CAS  Google Scholar 

  • Alm, S., Jantunen, M. J., & Vartiainen, M. (1999). Urban commuter exposure to particle matter and carbon monoxide inside and automobile. Journal of Exposure Analysis and Environmental Epidemiology, 9, 237–244.

    Article  CAS  Google Scholar 

  • Amato, F., Font, O., Moreno, N., Alastuey, A., & Querol, X. (2012). Mineralogy and elemental composition of brake pads of common use in Spain. Macla, 16, 154–156.

    Google Scholar 

  • Anderson, J. O., Thundiyil, J. G., & Stolbach, A. (2012). Clearing the air: A review of the effects of particulate matter air pollution on human health. Journal of Medical Toxicology, 8, 166–175.

    Article  CAS  Google Scholar 

  • Anthony, J. W., Bideaux, R. A., Bladh, K. W., & Nichols, M. C. (2009). The Handbook of Mineralogy. Mineralogical Society of America. https://www.handbookofmineralogy.org/. Accessed 28 October 2019.

  • Barthelmy, D. (2010). The Mineralogy Database. https://webmineral.com/. Accessed 28 October 2019.

  • Bell, M. L., & Holloway, T. (2007). Global impacts of particulate matter air pollution. Environmental Research Letters, 2(4), 045026.

    Article  Google Scholar 

  • Bernstein, L. S., Lang, R. J., Lunt, R. S., Musser, G. S., & Fedor, R. J. (1973). Nickel-copper alloy Nox reduction catalysts for dual catalyst systems. SAE Transactions, 82, 1930–1942.

    Google Scholar 

  • Boisa, N., Elom, N., Dean, J. R., Deary, M. E., Bird, G., & Entwistle, J. A. (2014). Development and application of an inhalation bioaccessibility method (IBM) for lead in the PM10 size fraction of soil. Environment International, 70, 132–142.

    Article  CAS  Google Scholar 

  • Boogaard, H., Borgman, F., Kamminga, J., & Hoek, G. (2009). Exposure to ultrafine and fine particles and noise during cycling and driving in 11 Dutch cities. Atmospheric Environment, 43, 4234–4242.

    Article  CAS  Google Scholar 

  • Breed, C. A., Arocena, J. M., & Sutherland, D. (2002). Possible sources of PM10 in Prince George (Canada) as revealed by morphology and in situ chemical composition of particulate. Atmospheric Environment, 36, 1721–1731.

    Article  CAS  Google Scholar 

  • Calas, A., Uzu, G., Martins, J. M. F., Voisin, D., Spadini, L., Lacroix, T., et al. (2017). The importance of simulated lung fluid (SLF) extractions for a more relevant evaluation of the oxidative potential of particulate matter. Scientific Reports, 7, 11617. https://doi.org/10.1038/s41598-017-11979-3

    Article  CAS  Google Scholar 

  • Cepeda, M., Schoufour, J., Freak-Poli, R., Koolhaas, C. M., Dhana, K., Bramer, W. M., et al. (2017). Levels of ambient air pollution according to mode of transport: A systematic review. The Lancet Public Health, 2(1), e23–e34.

    Article  Google Scholar 

  • Chan, L. Y., Lau, W. L., Lee, S. C., & Chan, C. Y. (2002). Commuter exposure to particulate matter in public transportation modes in Hong Kong. Atmospheric Environment, 36, 3363–3373.

    Article  CAS  Google Scholar 

  • Chen, Y., Shah, N., Huggins, F. E., & Huffman, G. P. (2006). Microanalysis of ambient particles from Lexington, KY, by electron microscopy. Atmospheric Environment, 40, 651–663.

    Article  CAS  Google Scholar 

  • Correia, C., Martins, V., Cunha-Lopes, I., Faria, T., Diapouli, E., Eleftheriadis, K., et al. (2020). Particle exposure and inhaled dose while commuting in Lisbon. Environmental Pollution, 257, 113547. https://doi.org/10.1016/j.envpol.2019.113547

    Article  CAS  Google Scholar 

  • Dallmann, T. R., Onasch, T. B., Kirchstetter, T. W., Worton, D. R., Fortner, E. C., Herndon, S. C., et al. (2014). Characterization of particulate matter emissions from on-road gasoline and diesel vehicles using a soot particle aerosol mass spectrometer. Atmospheric Chemistry and Physics, 14, 7585–7599.

    Article  CAS  Google Scholar 

  • Davis, H. T., Aelion, C. M., McDermott, S., & Lawson, A. B. (2009). Identifying natural and anthropogenic sources of metals in urban and rural soils using GIS-based data, PCA, and spatial interpolation. Environmental Pollution, 157, 2378–2385.

    Article  CAS  Google Scholar 

  • De Miguel, E., Ordóñez, A., Barrio-Parra, F., Izquierdo-Díaz, M., Álvarez, R., Mingot, J., et al. (2019). Bioaccessibility of trace elements in urban environments. In S. M. Charlesworth & C. A. Booth (Eds.), Urban pollution: Science and management (1st ed., pp. 107–118). Hoboken: Wiley.

    Google Scholar 

  • Deng, Q., Deng, L., Miao, Y., Guo, X., & Li, Y. (2019). Particle deposition in the human lung: Health implications of particulate matter from different sources. Environmental Research, 169, 237–245.

    Article  CAS  Google Scholar 

  • Entwistle, J. A., Hursthouse, A. S., Marinho Reis, P. A., & Stewart, A. G. (2019). Metalliferous mine dust: Human health impacts and the potential determinants of disease in mining communities. Current Pollution Reports, 5, 67–83.

    Article  CAS  Google Scholar 

  • Evans, A., & Evans, R. (2006). The Composition of a tyre: Typical components. Banbury: The Waste and Resources Action Programme.

    Google Scholar 

  • Gasparatos, D. (2013). Sequestration of heavy metals from soil with Fe–Mn concretions and nodules. Environmental Chemistry Letters, 11, 1–9.

    Article  CAS  Google Scholar 

  • Gehrig, R., & Buchmann, B. (2003). Characterising seasonal variations and spatial distribution of ambient PM10 and PM2.5 concentrations based on long-term Swiss monitoring data. Atmospheric Environment, 37, 2571–2580.

    Article  CAS  Google Scholar 

  • Gieré, R., & Querol, X. (2010). Solid particulate matter in the atmosphere. Elements, 6(4), 215–222.

    Article  CAS  Google Scholar 

  • Gilmour, P. S., Brown, D. M., Lindsay, T. G., Beswick, P. H., MacNee, W., & Donaldson, K. (1996). Adverse health effects of PM10 particles: involvement of iron in generation of hydroxyl radical. Occupational and Environmental Medicine, 53, 817–822.

    Article  CAS  Google Scholar 

  • Girard, J. E. (2010). Principles of environmental chemistry (2nd ed.). Sudbury: Jones and Bartlett Publishers.

    Google Scholar 

  • Go, Y. M., & Jones, D. P. (2016). Exposure memory and lung regeneration. American Thoracic Society, 13(Suppl. 2), S452–S461.

    Article  Google Scholar 

  • Gokul Raj, M., & Karthikeyan, S. (2020). Effect of modes of transportation on commuters’ exposure to fine particulate matter (PM2.5) and nitrogen dioxide (NO2) in Chennai, India. Environmental Engineering Research, 25(6), 898–907.

    Google Scholar 

  • Goldstein, J., Newbury, D., Joy, D., Lyman, C., Echlin, P., Lifshin, E., et al. (2003). Scanning electron microscopy and x-ray microanalysis (3rd ed.). New York: Kluwer Academic/Plenum Publishers.

    Book  Google Scholar 

  • Gottesfeld, P. (2015). Time to ban lead in industrial paints and coatings. Frontiers in Public Health, 3, 144. https://doi.org/10.3389/fpubh.2015.00144.

  • Grigoratos, T., & Martini, G. (2015). Brake wear particle emissions: A review. Environmental Science and Pollution Research, 22, 2491–2504.

    Article  CAS  Google Scholar 

  • Grobéty, B., Gieré, R., Dietze, V., & Stille, P. (2010). Airborne particles in the urban environment. Elements, 6(4), 229–234.

    Article  CAS  Google Scholar 

  • Hamanaka, R. B., & Mutlu, G. M. (2018). Particulate matter air pollution: Effects on the cardiovascular system. Frontiers in Endocrinology, 9, 680. https://doi.org/10.3389/fendo.2018.00680.

    Article  Google Scholar 

  • Henderson, R. G., Verougstraete, V., Anderson, K., Arbildua, J. J., Brock, T. O., Brouwers, T., et al. (2014). Inter-laboratory validation of bioaccessibility testing for metals. Regulatory Toxicology and Pharmacology, 70, 170–181.

    Article  CAS  Google Scholar 

  • Herting, G., Odnevall Wallinder, I., & Leygraf, C. (2007). Metal release from various grades of stainless steel exposed to synthetic body fluids. Corrosion Science, 49, 103–111.

    Article  CAS  Google Scholar 

  • Hillwalker, W. E., & Anderson, K. A. (2014). Bioaccessibility of metals in alloys: Evaluation of three surrogate biofluids. Environmental Pollution, 185, 52–58.

    Article  CAS  Google Scholar 

  • Hinds, W. C. (1999). Aerosol technology: Properties, behavior, and measurement of airborne particles (2nd ed.). New York: Wiley.

    Google Scholar 

  • Hodzic, A., Madronich, S., Bohn, B., Massie, S., Menut, L., & Wiedinmyer, C. (2007). Wildfire particulate matter in Europe during summer 2003: meso-scale modeling of smoke emissions, transport and radiative effects. Atmospheric Chemistry and Physics, 7, 4043–4064.

    Article  CAS  Google Scholar 

  • Hudson-Edwards, K. A. (2003). Sources, mineralogy, chemistry and fate of heavy metal-bearing particles in mining-affected river systems. Mineralogical Magazine, 67, 205–217.

    Article  CAS  Google Scholar 

  • JEOL. (2007). JSM-6490LV scanning electron microscope, instruction manual. Tokyo: JEOL Ltd.

    Google Scholar 

  • Johnson, L. R. (2003). Essential medical physiology (3rd ed.). San Diego: Academic Press.

    Google Scholar 

  • Kaiser, M. S., & Dutta, S. (2014). Wear behavior of commercial aluminium engine block and piston under dry sliding condition. International Journal of Chemical, Molecular, Nuclear, Materials and Metallurgical Engineering, 8(8), 860–865.

    Google Scholar 

  • Karanasiou, A., Viana, M., Querol, X., Moreno, T., & de Leeuw, F. (2014). Assessment of personal exposure to particulate air pollution during commuting in European cities—recommendations and policy implications. Science of the Total Environment, 490, 785–797.

    Article  CAS  Google Scholar 

  • Kaur, S., Nieuwenhuijsen, M. J., & Colvile, R. N. (2007). Fine particulate matter and carbon monoxide exposure concentrations in urban street transport microenvironments. Atmospheric Environment, 41, 4781–4810.

    Article  CAS  Google Scholar 

  • Keskin, S. S., & Dilmac, E. (2017). Indoor air particulate matter exposure of commuter bus passengers in Istanbul Turkey. Indoor and Built Environment, 26(3), 337–346.

    Article  CAS  Google Scholar 

  • Khan, I., Saeed, K., & Khan, I. (2019). Nanoparticles: Properties, applications and toxicities. Arabian Journal of Chemistry, 12(7), 908–931.

    Article  CAS  Google Scholar 

  • Kim, K.-H., Kabir, E., & Kabir, S. (2015). A review on the human health impact of airborne particulate matter. Environment International, 74, 136–143.

    Article  CAS  Google Scholar 

  • Kongtip, P., Anthayanon, T., Yoosook, W., & Onchoi, C. (2012). Exposure to particulate matter, CO2, CO, VOCs among bus drivers in Bangkok. Journal of the Medical Association of Thailand, 95(Suppl. 6), S169–S178.

    Google Scholar 

  • Krsmanović, R. (2003). Characterization and analysis of heavy metal particles in fly ashes from oil-fired power stations by scanning electron microscopy. Microscopia Elettronica, 24(1), 94–105.

    Google Scholar 

  • Kukutschová, J., Moravec, P., Tomášek, V., Matějka, V., Smolík, J., Schwarz, J., et al. (2011). On airborne nano/micro-sized wear particles released from low-metallic automotive brakes. Environmental Pollution, 159(4), 998–1006.

    Article  CAS  Google Scholar 

  • Kumar, P., Rivas, I., Singh, A. P., Ganesh, V. J., Ananya, M., & Frey, H. C. (2018). Dynamics of coarse and fine particle exposure in transport microenvironments. npj Climate and Atmospheric Science, 1, 11. https://doi.org/10.1038/s41612-018-0023-y.

    Article  Google Scholar 

  • Kupiainen, K., Ritola, R., Stojiljkovic, A., Pirjola, L., Malinen, A., & Niemi, J. (2016). Contribution of mineral dust sources to street side ambient and suspension PM10 samples. Atmospheric Environment, 147, 178–189.

    Article  CAS  Google Scholar 

  • Lin, H., Ratnapradipa, K., Wang, X., Zhang, Y., Xu, Y., Yao, Z., et al. (2017). Hourly peak concentration measuring the PM2.5-mortality association: Results from six cities in the Pearl River delta study. Atmospheric Environment, 161, 27–33.

    Article  CAS  Google Scholar 

  • Makino, H. (2018). Safety of nanoparticles. In M. Naito, T. Yokoyama, K. Hosokawa, & K. Nogi (Eds.), Nanoparticle technology handbook (3rd ed., pp. 379–388). Amsterdam: Elsevier.

    Google Scholar 

  • Martin, R., Dowling, K., Pearce, D., Sillitoe, J., & Florentine, S. (2014). Health effects associated with inhalation of airborne arsenic arising from mining operations. Geosciences, 4, 128–175.

    Article  Google Scholar 

  • McNabola, A., Broderick, B. M., & Gill, L. W. (2008). Relative exposure to fine particulate matter and VOCs between transport microenvironments in Dublin: Personal exposure and uptake. Atmospheric Environment, 42, 6496–6512.

    Article  CAS  Google Scholar 

  • Midander, K., de Frutos, A., Hedberg, Y., Darrie, G., & Odnevall Wallinder, I. (2010). Bioaccessibility studies of ferro-chromium alloy particles for a simulated inhalation scenario. A comparative study with the pure metals and stainless steel. Integrated Environmental Assessment and Management, 6(3), 441–455.

    Article  CAS  Google Scholar 

  • Miler, M. (2014). SEM/EDS characterisation of dusty deposits in precipitation and assessment of their origin. Geologija, 57(1), 5–14.

    Article  Google Scholar 

  • Miler, M. (2017). Characterisation of secondary metal-bearing phases in used dental amalgam and assessment of gastric solubility. Environmental Geochemistry and Health, 39, 1607–1619.

    Article  CAS  Google Scholar 

  • Miler, M., & Gosar, M. (2009). Characterisation of solid airborne particles in urban snow deposits from Ljubljana by means of SEM/EDS. RMZ – Materials and Geoenvironment, 56(3), 266–282.

    CAS  Google Scholar 

  • Miler, M., & Gosar, M. (2013). Assessment of metal pollution sources by SEM/EDS analysis of solid particles in snow: A case study of Žerjav, Slovenia. Microscopy and Microanalysis, 19, 1606–1619.

    Article  CAS  Google Scholar 

  • Miler, M., & Gosar, M. (2015). Chemical and morphological characteristics of solid metal-bearing phases deposited in snow and stream sediment as indicators of their origin. Environmental Science and Pollution Research, 22, 1906–1918.

    Article  CAS  Google Scholar 

  • Mills-Knapp, S., Traore, K., Ericson, B., Keith, J., Hanrahan, D., & Caravanos, J. (2012). The world’s worst pollution problems: Assessing health risks at hazardous waste sites. New York: Blacksmith Institute.

    Google Scholar 

  • Miri, M., Ebrahimi Aval, H., Ehrampoush, M. H., Mohammadi, A., Toolabi, A., Nikonahad, A., et al. (2017). Human health impact assessment of exposure to particulate matter: An AirQ software modeling. Environmental Science and Pollution Research, 24, 16513–16519.

    Article  Google Scholar 

  • Moreno, T., Reche, C., Rivas, I., Cruz Minguillón, M., Martins, V., Vargas, C., et al. (2015). Urban air quality comparison for bus, tram, subway and pedestrian commutes in Barcelona. Environmental Research, 142, 495–510.

    Article  CAS  Google Scholar 

  • Mudge, S. M. (2008). Environmental forensics and the importance of source identification. In R. E. Hester & R. M. Harrison (Eds.), Environmental forensics (pp. 1–16). Cambridge: Royal Society of Chemistry.

    Google Scholar 

  • Naidoo, S., & Steyn, W. J. vdM. (2018). Performance of thermoplastic road-marking material. Journal of the South African Institution of Civil Engineering, 60(2), 9–22.

    Article  Google Scholar 

  • Ny, M. T., & Lee, B. K. (2011). Size distribution of airborne particulate matter and associated metallic elements in an urban area of an industrial city in Korea. Aerosol and Air Quality Research, 11, 643–653.

    Article  CAS  Google Scholar 

  • Odekanle, E. L., Fakinle, B. S., Akeredolu, F. A., Sonibare, J. A., & Adesanmi, A. J. (2016). Personal exposures to particulate matter in various modes of transport in Lagos city Nigeria. Cogent Environmental Science, 2(1), 1260857. https://doi.org/10.1080/23311843.2016.1260857

    Article  CAS  Google Scholar 

  • Official Gazette, R. S. (2011). Decree on ambient air quality (in Slovene). Official Gazette of the Republic of Slovenia, 911, 964–983.

    Google Scholar 

  • Okuda, T., Katsuno, M., Naoi, D., Nakao, S., Tanaka, S., He, K., et al. (2008). Trends in hazardous trace metal concentrations in aerosols collected in Beijing, China from 2001 to 2006. Chemosphere, 72, 917–924.

    Article  CAS  Google Scholar 

  • Onat, B., & Stakeeva, B. (2013). Personal exposure of commuters in public transport to PM2.5 and fine particle counts. Atmospheric Pollution Research, 4, 329–335.

    Article  CAS  Google Scholar 

  • Oxford Instruments. (2006). INCA energy operator manual. High Wycombe: Oxford Instruments Analytical Ltd.

  • Parkhurst, D. L., & Appelo, C. A. J. (1999). Users’ guide to PHREEQC (Version 2)—a computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations. Denver: U.S. Geological Survey.

    Google Scholar 

  • Pelfrêne, A., Cave, M. R., Wragg, J., & Douay, F. (2017). In vitro investigations of human bioaccessibility from reference materials using simulated lung fluids. International Journal of Environmental Research and Public Health, 14(2), 112. https://doi.org/10.3390/ijerph14020112

    Article  CAS  Google Scholar 

  • Piña, A. A., Torres, G. V., Monroy, M. F., Luszczewski, A. K., & Leyva, R. R. (2000). Scanning electron microscope and statistical analysis of suspended heavy metal particles in San Luis Potosi, Mexico. Atmospheric Environment, 34, 4103–4112.

    Article  Google Scholar 

  • Piringer, M., & Schauberger, G. (2013). Dispersion modelling for odour exposure assessment. In V. Belgiorno, V. Naddeo, & T. Zarra (Eds.), Odour impact assessment handbook (pp. 125–174). Chichester: Wiley.

    Google Scholar 

  • Ravindra, K., Bencs, L., & Van Grieken, R. (2004). Platinum group elements in the environment and their health risk. Science of the Total Environment, 318, 1–43.

    Article  CAS  Google Scholar 

  • Rist, S., & Hartmann, N. B. (2017). Aquatic ecotoxicity of microplastics and nanoplastics: Lessons learned from engineered nanomaterials. In M. Wagner & S. Lambert (Eds.), Freshwater microplastics: Emerging environmental contaminants? (pp. 25–49). Cham: Springer Nature.

    Google Scholar 

  • Rodríguez, S., Alastuey, A., Alonso-Pérez, S., Querol, X., Cuevas, E., Abreu-Afonso, J., et al. (2011). Transport of desert dust mixed with North African industrial pollutants in the subtropical Saharan air layer. Atmospheric Chemistry and Physics, 11, 6663–6685.

    Article  CAS  Google Scholar 

  • Saha Podder, A., & Bhanja, A. (2013). Applications of stainless steel in automobile industry. Advanced Materials Research, 794, 731–740.

    Article  Google Scholar 

  • Saksena, S., Quang, T. N., Nguyen, T., Dang, P. N., & Flachsbart, P. (2008). Commuters’ exposure to particulate matter and carbon monoxide in Hanoi Vietnam. Transportation Research Part D, 13, 206–211.

    Article  Google Scholar 

  • Samet, J. M., Zeger, S. L., Dominici, F., Curriero, F., Coursac, I., Dockery, D. W., et al. (2000). The national morbidity, mortality, and air pollution study. Part II: Morbidity and mortality from air pollution in the United States. Research Reports of the Health Effects Institute, 94, 5–70.

    CAS  Google Scholar 

  • Schöner, W., Staudinger, M., Winiwarter, W., & Pichlmayer, F. (1993). Dating of snow samples from snow pits at sonnblick austrian alps as a tool for interpretation of chemical analysis. In P. M. Borell, P. Borell, T. Cvitas, & W. Seiler (Eds.), The Proceedings of EUROTRAC Symposium ’92 (pp. 753–756). The Hague: SPB Academic Publishing.

    Google Scholar 

  • Schwertmann, U. (1991). Solubility and dissolution of iron oxides. Plant and Soil, 130(1–2), 1–25.

    Article  CAS  Google Scholar 

  • Setti, L., Passarini, F., De Gennaro, G., Barbieri, P., Pallavicini, A., Ruscio, M., et al. (2020). Searching for SARS-COV-2 on particulate matter: A possible early indicator of COVID-19 epidemic recurrence. International Journal of Environmental Research and Public Health, 17(9), E2986. https://doi.org/10.3390/ijerph17092986

    Article  CAS  Google Scholar 

  • Slanina, S. (2006). Impact of local air pollution. In J. Cutler (Ed.), Encyclopedia of Earth. Washington, D.C.: Environmental Information Coalition, National Council for Science and the Environment. https://www.eoearth.org/article/Impact_of_local_air_pollution. Accessed 6 March 2011.

  • Slovenian Environment Agency. (2015). Air quality from automatic monitoring stations. https://www.arso.gov.si/zrak/kakovost%20zraka/podatki/amp/e00_t_30.html. Accessed 9 April 2015.

  • Slovenian Environment Agency. (2019). Archive of meteorological data. https://meteo.arso.gov.si/met/sl/app/webmet/#webmet==8Sdwx2bhR2cv0WZ0V2bvEGcw9ydlJWblR3LwVnaz9SYtVmYh9iclFGbt9SaulGdugXbsx3cs9mdl5WahxXYyNGapZXZ8tHZv1WYp5mOnMHbvZXZulWYnwCchJXYtVGdlJnOn0UQQdSf. Accessed 1 December 2019.

  • Son, J. Y., & Bell, M. L. (2013). The relationships between short-term exposure to particulate matter and mortality in Korea: Impact of particulate matter exposure metrics for sub-daily exposures. Environmental Research Letters, 8(1), 014015.

    Article  CAS  Google Scholar 

  • Sun, Y., Hub, X., Wu, W., Lian, H., & Chen, Y. (2014). Fractionation and health risks of atmospheric particle-bound as and heavy metals in summer and winter. Science of the Total Environment, 493, 487–494.

    Article  CAS  Google Scholar 

  • Šeme Lesjak, Š. (2014). Winter maintenance of state roads (in Slovene). Ljubljana, Slovenia: B&B higher vocational college. https://www.bb.si/doc/diplome/Seme_Lesjak_Spela.pdf

  • Teran, K., Žibret, G., & Fanetti, M. (2019). Impact of urbanization and steel mill emissions on elemental composition of street dust and corresponding particle characterization. Journal of Hazardous Materials, 384, 120963. https://doi.org/10.1016/j.jhazmat.2019.120963.

    Article  CAS  Google Scholar 

  • Thompson, J. E. (2018). Airborne particulate matter: Human exposure and health effects. Journal of Occupational and Environmental Medicine, 60(5), 392–423.

    Article  CAS  Google Scholar 

  • Touloumi, G., Samoli, E., Gryparis, A., Le Tertre, A., Monopolis, Y., et al. (2001). Confounding and effect modification in the short-term effects of ambient particles on total mortality: Results from 29 European cities within the APHEA2 project. Epidemiology, 12, 521–531.

    Article  Google Scholar 

  • Tsai, D. H., Wu, Y. H., & Chan, C. C. (2008). Comparisons of commuter’s exposure to particulate matters while using different transportation modes. Science of the Total Environment, 405, 71–77.

    Article  CAS  Google Scholar 

  • van Setten, B. A. A. L., Makkee, M., & Moulijn, J. A. (2001). Science and technology of catalytic diesel particulate filters. Catalysis Reviews, 43(4), 489–564.

    Article  Google Scholar 

  • von Glasow, R., Bobrowski, N., & Kern, C. (2009). The effects of volcanic eruptions on atmospheric chemistry. Chemical Geology, 263, 131–142.

    Article  CAS  Google Scholar 

  • Wang, L., Stanič, S., Bergant, K., Eichinger, W., Močnik, G., & Drinovec, L. (2019). Retrieval of vertical mass concentration distributions—Vipava valley case study. Remote Sensing, 11(2), 106. https://doi.org/10.3390/rs11020106

    Article  Google Scholar 

  • WHO (2006). Air quality guidelines for particulate matter, ozone, nitrogen dioxide and sulfur dioxide. Global update 2005. Summary of risk assessment. https://apps.who.int/iris/bitstream/10665/69477/1/WHO_SDE_PHE_OEH_06.02_eng.pdf. Accessed 1 December 2019.

  • Wikipedia contributors. (2018). City bus service no. 6 (Ljubljana). Wikipedia, The Free Encyclopedia. https://en.wikipedia.org/w/index.php?title=City_bus_service_no._6_(Ljubljana)&oldid=874013961. Accessed 23 September 2019.

  • Wu, W., Jin, Y., & Carlsten, C. (2018). Inflammatory health effects of indoor and outdoor particulate matter. Journal of Allergy and Clinical Immunology, 141(3), 833–844.

    Article  CAS  Google Scholar 

  • Xie, R. K., Seip, H. M., Liu, L., & Zhang, D. S. (2009). Characterization of individual airborne particles in Taiyuan city, China. Air Quality, Atmosphere and Health, 2, 123–131.

    Article  CAS  Google Scholar 

  • Yu, X., O’Connell, M., Hu, J., Tanrikulu, S., Soon, S.-T., Tran, C., et al. (2019). Regional sources of airborne ultrafine particle number and mass concentrations in California. Atmospheric Chemistry and Physics, 19, 14677–14702.

    Article  CAS  Google Scholar 

  • Zuurbier, M., Hoek, G., Oldenwening, M., Lenters, V., Meliefste, K., van den Hazel, P., et al. (2010). Commuters’ exposure to particulate matter air pollution is affected by mode of transport, fuel type, and route. Environmental Health Perspectives, 118(6), 783–789.

    Article  Google Scholar 

Download references

Acknowledgements

The author acknowledges financial support from the state budget by the Slovenian Research Agency obtained through the research projects “Source identification of solid pollutants in the environment on the basis of mineralogical, morphological and geochemical properties of particles” (No. Z1-7187) and “Dynamics and matter flow of potentially toxic elements (PTEs) in urban environment” (No. J1-1713), and programme “Mineral resources” (No. P1-0025). The author is also thankful to Ljubljana public transport (LPP d.o.o.) for enabling measurements and sampling, and to the editor and two anonymous reviewers for the thorough revision of the manuscript and their constructive comments that helped improve the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miloš Miler.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miler, M. Airborne particles in city bus: concentrations, sources and simulated pulmonary solubility. Environ Geochem Health 43, 2757–2780 (2021). https://doi.org/10.1007/s10653-020-00770-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-020-00770-5

Keywords

Navigation