Skip to main content
Log in

Optimized advance front method of packing dense ellipse for generating the convex polygon structure statistically equivalent with real material

  • Published:
Computational Particle Mechanics Aims and scope Submit manuscript

Abstract

A new constructive method, called optimized advance front method (OAFM), for ellipse packing is proposed. The OAFM allows particle rotation at several angles and movement along a local advance front. Combined with the ellipse approximated by four connected arcs and a series of sequential coordinate transformations, the OAFM generates dense ellipse packing with any imposed size, aspect ratio, and orientation distribution at a fastpacking speed, and the generated ellipse packing can satisfy an imposed spatial arrangement. Based on the approximation of ellipses by multicircles, Laguerre Voronoi Tessellation method constructs initial cells. The initial cells are then merged to create the convex polygon with the same size, aspect ratio, orientation, and location as that of the obtained ellipse. Three examples of ellipse packing and convex polygon demonstrate that the convex polygon generated can be statistically equivalent with the real material and satisfy an imposed spatial arrangement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

References

  1. Bagi K (2005) An algorithm to generate random dense arrangements for discrete element simulations of granular assemblies. Granul Matter 7(1):31–43. https://doi.org/10.1007/s10035-004-0187-5

    Article  MATH  Google Scholar 

  2. Bargmann S, Klusemann B, Markmann J, Schnabel JE, Schneider K, Soyarslan C, Wilmers J (2018) Generation of 3D representative volume elements for heterogeneous materials: a review. Prog Mater Sci 96:322–384. https://doi.org/10.1016/j.pmatsci.2018.02.003

    Article  Google Scholar 

  3. Benabbou A, Borouchaki H, Laug P, Lu J (2008) Sphere packing and applications to granular structure modeling. In: Proceedings of the 17th international meshing roundtable. Springer, pp 1–18 (Reprinted)

  4. Benabbou A, Borouchaki H, Laug P, Lu J (2010) Numerical modeling of nanostructured materials. Finite Elem Anal Des 46(1–2):165–180. https://doi.org/10.1016/j.finel.2009.06.030

    Article  Google Scholar 

  5. Bernacki M, Logé RE, Coupez T (2011) Level set framework for the finite-element modelling of recrystallization and grain growth in polycrystalline materials. Scr Mater 64(6):525–528. https://doi.org/10.1016/j.scriptamat.2010.11.032

    Article  Google Scholar 

  6. Berntsen KN (2001) Modelling granular media and molecular dynamics simulations of ellipses

  7. Birgin EG, Lobato RD (2019) A matheuristic approach with nonlinear subproblems for large-scale packing of ellipsoids. Eur J Oper Res 272(2):447–464. https://doi.org/10.1016/j.ejor.2018.07.006

    Article  MathSciNet  MATH  Google Scholar 

  8. Birgin EG, Lobato RD, Martínez JM (2016) Packing ellipsoids by nonlinear optimization. J Global Optim 65(4):709–743. https://doi.org/10.1007/s10898-015-0395-z

    Article  MathSciNet  MATH  Google Scholar 

  9. Delaney G, Weaire D, Hutzler S, Murphy S (2005) Random packing of elliptical disks. Philos Mag Lett 85(2):89–96. https://doi.org/10.1080/09500830500080763

    Article  Google Scholar 

  10. Donev A (2004) Improving the density of jammed disordered packings using ellipsoids. Science 303(5660):990–993. https://doi.org/10.1126/science.1093010

    Article  Google Scholar 

  11. Donev A, Connelly R, Stillinger FH, Torquato S (2007) Underconstrained jammed packings of nonspherical hard particles: ellipses and ellipsoids. Phys Rev E 75(5):51304. https://doi.org/10.1103/physreve.75.051304

    Article  MathSciNet  Google Scholar 

  12. Falco S, Siegkas P, Barbieri E, Petrinic N (2014) A new method for the generation of arbitrarily shaped 3D random polycrystalline domains. Comput Mech 54(6):1447–1460. https://doi.org/10.1007/s00466-014-1068-3

    Article  MathSciNet  MATH  Google Scholar 

  13. Feng YT, Han K, Owen DRJ (2002) An advancing front packing of polygons, ellipses and spheres. Int J Numer Methods Eng

  14. Feng YT, Han K, Owen D (2003) Filling domains with disks: an advancing front approach. Int J Numer Methods Eng 56(5):699–713

    Article  Google Scholar 

  15. Gao F, Stead D, Elmo D (2016) Numerical simulation of microstructure of brittle rock using a grain-breakable distinct element grain-based model. Comput Geotech 78:203–217. https://doi.org/10.1016/j.compgeo.2016.05.019

    Article  Google Scholar 

  16. Ghazvinian E, Diederichs MS, Quey R (2014) 3D random Voronoi grain-based models for simulation of brittle rock damage and fabric-guided micro-fracturing. J Rock Mech Geotech Eng 6(6):506–521. https://doi.org/10.1016/j.jrmge.2014.09.001

    Article  Google Scholar 

  17. Gross D, Li M (2002) Constructing microstructures of poly- and nanocrystalline materials for numerical modeling and simulation. Appl Phys Lett 80(5):746–748. https://doi.org/10.1063/1.1432448

    Article  Google Scholar 

  18. Hidalgo RC, Kadau D, Kanzaki T, Herrmann HJ (2012) Granular packings of cohesive elongated particles. Granul Matter 14(2):191–196. https://doi.org/10.1007/s10035-011-0303-2

    Article  Google Scholar 

  19. Hitti K, Bernacki M (2013) Optimized dropping and rolling (ODR) method for packing of poly-disperse spheres. Appl Math Model 37(8):5715–5722. https://doi.org/10.1016/j.apm.2012.11.018

    Article  MathSciNet  MATH  Google Scholar 

  20. Hitti K, Laure P, Coupez T, Silva L, Bernacki M (2012) Precise generation of complex statistical representative volume elements (RVEs) in a finite element context. Comput Mater Sci 61:224–238. https://doi.org/10.1016/j.commatsci.2012.04.011

    Article  Google Scholar 

  21. Ilin DN, Bernacki M (2016) Advancing layer algorithm of dense ellipse packing for generating statistically equivalent polygonal structures. Granul Matter. https://doi.org/10.1007/s10035-016-0646-9

    Article  Google Scholar 

  22. Kerimov A, Mavko G, Mukerji T, Dvorkin J, Al Ibrahim MA (2018) The influence of convex particles’ irregular shape and varying size on porosity, permeability, and elastic bulk modulus of granular porous media: insights from numerical simulations. J Geophys Res Solid Earth 123(12):510–563. https://doi.org/10.1029/2018jb016031

    Article  Google Scholar 

  23. Markauskas D, Kačianauskas R, Džiugys A, Navakas R (2010) Investigation of adequacy of multi-sphere approximation of elliptical particles for DEM simulations. Granul Matter 12(1):107–123. https://doi.org/10.1007/s10035-009-0158-y

    Article  MATH  Google Scholar 

  24. Mollon G, Zhao J (2012) Fourier–Voronoi-based generation of realistic samples for discrete modelling of granular materials. Granul Matter 14(5):621–638. https://doi.org/10.1007/s10035-012-0356-x

    Article  Google Scholar 

  25. Morales IP, de Farias MM, Valera RR, Morfa CR, Martínez Carvajal HE (2016) Contributions to the generalization of advancing front particle packing algorithms. Int J Numer Methods Eng 107(12):993–1008. https://doi.org/10.1002/nme.5192

    Article  MathSciNet  MATH  Google Scholar 

  26. Morfa CAR, Pérez Morales IP, de Farias MM, de Navarra EOI, Valera RR, Casañas HD (2016) General advancing front packing algorithm for the discrete element method. Comput Part Mech. https://doi.org/10.1007/s40571-016-0144-1

    Article  Google Scholar 

  27. O’Sullivan C (2011) Particulate discrete element modelling: a geomechanics perspective. CRC Press, Boca Raton

    Book  Google Scholar 

  28. Pérez Morales I, Roselló Valera R, Recarey Morfa C, Muniz De Farias M (2017) Dense packing of general-shaped particles using a minimization technique. Comput Part Mech 4(2):165–179. https://doi.org/10.1007/s40571-016-0103-x

    Article  Google Scholar 

  29. Potyondy D (2010) PFC2D grain-structure generator technical memorandum. Itasca Consulting Group Inc, Minneapolis (Reprinted)

    Google Scholar 

  30. Recarey C, Pérez I, Roselló R, Muniz M, Hernández E, Giraldo R, Oñate E (2019) Advances in particle packing algorithms for generating the medium in the discrete element method. Comput Methods Appl Mech Eng 345:336–362. https://doi.org/10.1016/j.cma.2018.11.011

    Article  MathSciNet  MATH  Google Scholar 

  31. Stavrou A, Vazaios I, Murphy W, Vlachopoulos N (2019) Refined approaches for estimating the strength of rock blocks. Geotech Geol Eng 37(6):5409–5439. https://doi.org/10.1007/s10706-019-00989-9

    Article  Google Scholar 

  32. Strang G (1993) The fundamental theorem of linear algebra. Am Math Mon 100(9):848–855. https://doi.org/10.1080/00029890.1993.11990500

    Article  MathSciNet  MATH  Google Scholar 

  33. van der Wielen KP, Rollinson G (2016) Texture-based analysis of liberation behaviour using Voronoi tessellations. Miner Eng 89:93–107. https://doi.org/10.1016/j.mineng.2015.09.008

    Article  Google Scholar 

  34. Wang C, Liang V (1997) A packing generation scheme for the granular assemblies with planar elliptical particles. Int J Numer Anal Met 21(5):347–358. https://doi.org/10.1002/(SICI)1096-9853(199705)21:5%3c347:AID-NAG874%3e3.0.CO;2-L

    Article  MATH  Google Scholar 

  35. Wejrzanowski T, Skibinski J, Szumbarski J, Kurzydlowski KJ (2013) Structure of foams modeled by Laguerre–Voronoi tessellations. Comput Mater Sci 67:216–221. https://doi.org/10.1016/j.commatsci.2012.08.046

    Article  Google Scholar 

  36. Wellmann C, Lillie C, Wriggers P (2008) Homogenization of granular material modeled by a three-dimensional discrete element method. Comput Geotech 35(3):394–405. https://doi.org/10.1016/j.compgeo.2007.06.010

    Article  Google Scholar 

  37. Wellmann C, Wriggers P (2011) Homogenization of granular material modeled by a 3D DEM, vol 25. Springer, Dordrecht, pp 211–231. https://doi.org/10.1007/978-94-007-0735-1_8(Reprinted)

    Book  Google Scholar 

  38. Wellmann C, Wriggers P (2012) A two-scale model of granular materials. Comput Methods Appl Mech Eng 205–208:46–58. https://doi.org/10.1016/j.cma.2010.12.023

    Article  MathSciNet  MATH  Google Scholar 

  39. Xu T, Li M (2009) Topological and statistical properties of a constrained Voronoi tessellation. Philos Mag 89(4):349–374. https://doi.org/10.1080/14786430802647065

    Article  Google Scholar 

  40. Xu WX, Chen HS, Lv Z (2011) An overlapping detection algorithm for random sequential packing of elliptical particles. Physica A 390(13):2452–2467. https://doi.org/10.1016/j.physa.2011.02.048

    Article  Google Scholar 

  41. Zhang P, Karimpour M, Balint D, Lin J, Farrugia D (2012) A controlled Poisson Voronoi tessellation for grain and cohesive boundary generation applied to crystal plasticity analysis. Comput Mater Sci 64:84–89. https://doi.org/10.1016/j.commatsci.2012.02.022

    Article  Google Scholar 

  42. Zhang Y, Wong LNY (2018) A review of numerical techniques approaching microstructures of crystalline rocks. Comput Geosci-UK 115:167–187. https://doi.org/10.1016/j.cageo.2018.03.012

    Article  Google Scholar 

  43. Zhou J, Zhang L, Yang D, Braun A, Han Z (2017) Investigation of the quasi-brittle failure of alashan granite viewed from laboratory experiments and grain-based discrete element modeling. Materials 10(7):835. https://doi.org/10.3390/ma10070835

    Article  Google Scholar 

  44. Zsaki AM (2009) An efficient method for packing polygonal domains with disks for 2D discrete element simulation. Comput Geotech 36(4):568–576. https://doi.org/10.1016/j.compgeo.2008.10.005

    Article  Google Scholar 

Download references

Funding

This study was funded by the National Key R&D Program of China (2018YFC1504802) and the National Natural Science Foundation of China (Nos. 41972266, 41772319).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinrong Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, L., Liu, X., Han, Y. et al. Optimized advance front method of packing dense ellipse for generating the convex polygon structure statistically equivalent with real material. Comp. Part. Mech. 8, 791–812 (2021). https://doi.org/10.1007/s40571-020-00370-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40571-020-00370-1

Keywords

Navigation