Skip to main content
Log in

On the effective diffusion in the Sierpiński carpet

  • Brief Communication
  • Published:
Computational Geosciences Aims and scope Submit manuscript

Abstract

In this work, we use the method of volume averaging to upscale the pore-scale diffusion equation on the Sierpiński carpet. Based on the isotropy condition in the fractal structure and the fact that the ratio of length scales in the Sierpiński carpet is constant, a general expression for the effective diffusion coefficient regarding the iteration of the fractal structure is suggested. Additionally, a general expression is recommended when such a ratio is not constant. The comparison between the direct numerical simulations and the results obtained from the upscaled model suggests that using a simplified expression for the effective diffusion coefficient is an attractive option when simulating large-scale fractal systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Bouchaud, J.P., Georges, A.: Anomalous diffusion in disordered media: statistical mechanisms, models and physical applications. Phys. Rep. 195, 127–293 (1990). https://doi.org/10.1016/0370-1573(90)90099-N

    Article  Google Scholar 

  2. Havlin, S., Ben-Avraham, D.: Diffusion in disordered media. Adv. Phys. 36, 695–798 (1987); 51, 187–292 (2002). https://doi.org/10.1016/0169-7439(91)80040-W

  3. Metzler, R., Klafter, J.: The restaurant at the end of the random walk: recent developments in the description of anomalous transport by fractional dynamics. J. Phys. A: Math. Gen. 37, R161 (2004). https://doi.org/10.1088/0305-4470/37/31/R01

    Article  Google Scholar 

  4. Metzler, R., Jeon, J.H., Cherstvy, A.G., Barkai, E.: Anomalous diffusion models and their properties: non-stationarity, non-ergodicity, and ageing at the centenary of single particle tracking. Phys. Chem. Chem. Phys. 16, 24128–24164 (2014). https://doi.org/10.1039/C4CP03465A

    Article  Google Scholar 

  5. Scheidegger, A.E.: An evaluation of the accuracy of the diffusivity equation for describing miscible displacement in porous media. In: Proc. Theory of Fluid Flow in Porous Media Conf., 2nd, pp. 101–116 (1959)

    Google Scholar 

  6. Berkowitz, B., Cortis, A., Dentz, M., Scher, H.: Modeling non-Fickian transport in geological formations as a continuous time random walk. Rev. Geophys. 44, (2006). https://doi.org/10.1029/2005RG000178

  7. Tejedor, V., Metzler, R.: Anomalous diffusion in correlated continuous time random walks. J. Phys. A: Math. Theor. 43, 082002 (2010). https://doi.org/10.1088/1751-8113/43/8/082002

    Article  Google Scholar 

  8. Albinali, A., Holy, R., Sarak, H., Ozkan, E.: Modeling of 1D anomalous diffusion in fractured nanoporous media. Oil & Gas Sci. and Tech. 71, 56 (2016). https://doi.org/10.2516/ogst/2016008

    Article  Google Scholar 

  9. Coleman, S.W., Vassilicos, J.C.: Transport properties of saturated and unsaturated porous fractal materials. Phys. Rev. Lett. 100, 035504 (2008). https://doi.org/10.1103/PhysRevLett.100.035504

    Article  Google Scholar 

  10. Hernandez-Coronado, H., Coronado, M., Herrera-Hernández, E.C.: Transport in fractal media: an effective scale-invariant approach. Phys. Rev. E. 85, 066316 (2012). https://doi.org/10.1103/PhysRevE.85.066316

    Article  Google Scholar 

  11. Herrera-Hernández, E.C., Coronado, M., Hernández-Coronado, H.: Fractal continuum model for tracer transport in a porous medium. Phys. Rev. E. 88, 063004 (2013). https://doi.org/10.1103/PhysRevE.88.063004

    Article  Google Scholar 

  12. Hernández, D., Herrera-Hernández, E.C., Núñez-López, M., Hernández-Coronado, H.: Self-similar turing patterns: an anomalous diffusion consequence. Phys. Rev. E. 95, 022210 (2017). https://doi.org/10.1103/PhysRevE.95.022210

    Article  Google Scholar 

  13. Costa, M.H.A.S., Araújo, A.D., Da Silva, H.F., Andrade, J.S.: Scaling behavior of diffusion and reaction processes in percolating porous media. Phys. Rev. E, 67(6) (2003), 061406 (2003). https://doi.org/10.1103/PhysRevE.67.061406

  14. Balankin, A.S., Elizarraraz, B.E.: Map of fluid flow in fractal porous medium into fractal continuum flow. Phys. Rev. E. 85(5), 056314 (2012). https://doi.org/10.1103/PhysRevE.85.056314

    Article  Google Scholar 

  15. Zhdanov, V.P.: Kinetics of lipid-nanoparticle-mediated intracellular mRNA delivery and function. Phys. Rev. E. 96(4), 042406 (2017). https://doi.org/10.1103/PhysRevE.96.042406

    Article  Google Scholar 

  16. Lou, Y., Xia, J., Tang, W., Chen, Y.: Linking biological and physical aging: dynamical scaling of multicellular regeneration. Phys. Rev. E. 96(6), 062418 (2017). https://doi.org/10.1103/PhysRevE.96.062418

    Article  Google Scholar 

  17. Doughty, C., Karasaky, K.: Flow and transport in hierarchically fractured rock. J. Hydrol. 263, 1–22 (2002). https://doi.org/10.1016/S0022-1694(02)00032-X

    Article  Google Scholar 

  18. Roubinet, D., de Dreuzy, J.-R., Tartakovky, D.: M.: particle-tracking simulations of anomalous transport in hierarchically fractured rocks. Comput. Geosci. 50, 52–58 (2013). https://doi.org/10.1016/j.cageo.2012.07.032

    Article  Google Scholar 

  19. O’Shaughnessy, B., Procaccia, I.: Diffusion on fractals. Phys. Rev. A. 32, 3073 (1985). https://doi.org/10.1103/PhysRevA.32.3073

    Article  Google Scholar 

  20. Lin, B.: Classification and universal properties of Sierpinski carpets. J. Phys. A: Math. Gen. 20, L163 (1987). https://doi.org/10.1088/0305-4470/20/3/009

    Article  Google Scholar 

  21. Kim, M.H., Yoon, D.H., Kim, I.: Lower and upper bounds for the anomalous diffusion exponent on Sierpinski carpets. J. Phys. A: Math. Gen. 26, 5655 (1993). https://doi.org/10.1088/0305-4470/26/21/007

    Article  Google Scholar 

  22. Aarão Reis, F.D.A.: Scaling for random walks on Sierpinski carpets. Phys. Lett. A. 214, 239 (1996). https://doi.org/10.1016/0375-9601(96)00201-0

    Article  Google Scholar 

  23. Aarão Reis, F.D.A.: Diffusion on regular random fractals. J. Phys. A: Math. Gen. 29, 7803 (1996). https://doi.org/10.1088/0305-4470/29/24/007

    Article  Google Scholar 

  24. Aarão Reis, F.D.A.: Scaling relations in the diffusive infiltration in fractals. Phys. Rev. E. 94, 052124 (1996). https://doi.org/10.1103/PhysRevE.94.052124

    Article  Google Scholar 

  25. Balankin: Effective degrees of freedom of a random walk on a fractal. Phys. Rev. E. 92, 062146 (2015). https://doi.org/10.1103/PhysRevE.92.062146

    Article  Google Scholar 

  26. Balankin: Mapping physical problems on fractals onto boundary value problems within continuum framework. Eur. Phys. J. B. 88, 90 (2015). https://doi.org/10.1016/j.physleta.2017.11.005

    Article  Google Scholar 

  27. Balankin, et al.: The topological Hausdorff dimension and transport properties of Sierpiński carpets. Physics Letters A. 381, 2801–2808 (2017). https://doi.org/10.1016/j.physleta.2017.06.049

    Article  Google Scholar 

  28. Balankin: A continuum framework for mechanics of fractal materials I: from fractional space to continuum with fractal metric. Phys. Lett. A. 382, 141–146 (2018). https://doi.org/10.1140/epjb/e2015-60189-y

    Article  Google Scholar 

  29. Guyer, R.A.: Diffusion on the Sierpiński gaskets: a random walker on a fractally structured object. Phys. Rev. A. 29(5), 2751–2755 (1984). https://doi.org/10.1103/PhysRevA.29.2751

    Article  Google Scholar 

  30. Dasgupta, R., Ballabh, T.K., Tarafdar, S.: Scaling exponents for random walks on Sierpinski carpets and number of distinct sites visited: a new algorithm for infinite fractal lattices. J. Phys. A: Math. Gen. 32, 6503 (1999). https://doi.org/10.1088/0305-4470/32/37/302

    Article  Google Scholar 

  31. Franz, A., Schulzky, C., Tarafdar, S., Hoffmann, K.: The pore structure of Sierpinski carpets. J. Phys. A: Math. Gen. 34, 8751 (2001). https://doi.org/10.1088/0305-4470/34/42/303

    Article  Google Scholar 

  32. Hambly, B.M., Kumagai, T., Kusuoka, S., Zhou, X.Y.: Transition density estimates for diffusion processes on homogeneous random Sierpinski carpets. Journal of the Mathematical Society of Japan. 52(2), 373–408 (2000). https://doi.org/10.2969/jmsj/05220373

    Article  Google Scholar 

  33. Barlow, M.T., Hattori, K., Hattori, T., Watanabe, H.: Weak homogenization of anisotropic diffusion on pre-Sierpiński carpets. Comm. in Math. Phys. 188, 1–27 (1997). https://doi.org/10.1007/s002200050155

    Article  Google Scholar 

  34. Ma, Q., Chen, Z.: Numerical study on gas diffusion in isotropic and anisotropic fractal porous media (gas diffusion in fractal porous media.). International Journal of Heat and Mass Transfer. 79, 925, –929 (2014). https://doi.org/10.1016/j.ijheatmasstransfer.2014.08.064

  35. Zheng, Q., Yu, B., Wang, S., Luo, L.: A diffusivity model for gas diffusion through fractal porous media. Chem. Eng. Sci. 68, 650–655 (2012). https://doi.org/10.1016/j.ces.2011.10.031

    Article  Google Scholar 

  36. Whitaker, S.: The Method of Volume Averaging. Kluwer Academic Publishers, Dordrecht (1999)

    Book  Google Scholar 

  37. Bear, J.: Dynamics of Fluids in Porous Media. Dover, New York (1972)

    Google Scholar 

  38. Ochoa-Tapia, J.A., del Río-P., A., Whitaker: Bulk and diffusion in porous media: an application of the surface averaging theorem. Chem. Eng. Sci. 48, 2061–2082 (1993). https://doi.org/10.1016/0009-2509(93)80082-2

    Article  Google Scholar 

  39. Gisladottir, V.R., Roubinet, D., Tartakovsky, D.M.: Particle methods for heat transfer in fractured media. Transp. Porous Med. 115(2), 311–326 (2016). https://doi.org/10.1007/s11242-016-0755-2

    Article  Google Scholar 

  40. Aguilar-Madera, C.G., Flores-Cano, J.V., Matías-Pérez, V., Briones-Carrillo, J.A., Velasco-Tapia, F.: Computing the permeability and Forchheimer tensor of porous rocks via closure problems and digital images. Adv. Water Res. 142, 103616 (2020). https://doi.org/10.1016/j.advwatres.2020.103616

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. C. Herrera-Hernández.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aguilar-Madera, C.G., Herrera-Hernández, E.C., Espinosa-Paredes, G. et al. On the effective diffusion in the Sierpiński carpet. Comput Geosci 25, 467–473 (2021). https://doi.org/10.1007/s10596-020-10016-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10596-020-10016-z

Keywords

Navigation