Skip to main content

Advertisement

Log in

The regulatory roles of p53 in cardiovascular health and disease

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Cardiovascular disease (CVD) remains the leading cause of mortality globally, so further investigation is required to identify its underlying mechanisms and potential targets for its prevention. The transcription factor p53 functions as a gatekeeper, regulating a myriad of genes to maintain normal cell functions. It has received a great deal of research attention as a tumor suppressor. In the past three decades, evidence has also shown a regulatory role for p53 in the heart. Basal p53 is essential for embryonic cardiac development; it is also necessary to maintain normal heart architecture and physiological function. In pathological cardiovascular circumstances, p53 expression is elevated in both patient samples and animal models. Elevated p53 plays a regulatory role via anti-angiogenesis, pro-programmed cell death, metabolism regulation, and cell cycle arrest regulation. This largely promotes the development of CVDs, particularly cardiac remodeling in the infarcted heart, hypertrophic cardiomyopathy, dilated cardiomyopathy, and diabetic cardiomyopathy. Roles for p53 have also been found in atherosclerosis and chemotherapy-induced cardiotoxicity. However, it has different roles in cardiomyocytes and non-myocytes, even in the same model. In this review, we describe the different effects of p53 in cardiovascular physiological and pathological conditions, in addition to potential CVD therapies targeting p53.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Virani SS, Alonso A, Benjamin EJ, Bittencourt MS, Callaway CW, Carson AP, Chamberlain AM, Chang AR, Cheng S, Delling FN, Djousse L, Elkind MSV, Ferguson JF, Fornage M, Khan SS, Kissela BM, Knutson KL, Kwan TW, Lackland DT, Lewis TT, Lichtman JH, Longenecker CT, Loop MS, Lutsey PL, Martin SS, Matsushita K, Moran AE, Mussolino ME, Perak AM, Rosamond WD, Roth GA, Sampson UKA, Satou GM, Schroeder EB, Shah SH, Shay CM, Spartano NL, Stokes A, Tirschwell DL, VanWagner LB, Tsao CW, American Heart Association Council on E, Prevention Statistics C, Stroke Statistics S (2020) Heart disease and stroke statistics-2020 update: a report from the american heart association. Circulation 141(9):e139–e596. https://doi.org/10.1161/CIR.0000000000000757

    Article  PubMed  Google Scholar 

  2. Beckerman R, Prives C (2010) Transcriptional regulation by p53. Cold Spring Harb Perspect Biol 2(8):a000935. https://doi.org/10.1101/cshperspect.a000935

    Article  PubMed  PubMed Central  Google Scholar 

  3. Vousden KH, Prives C (2009) Blinded by the Light: The Growing Complexity of p53. Cell 137(3):413–431. https://doi.org/10.1016/j.cell.2009.04.037

    Article  CAS  PubMed  Google Scholar 

  4. Bae BI, Xu H, Igarashi S, Fujimuro M, Agrawal N, Taya Y, Hayward SD, Moran TH, Montell C, Ross CA, Snyder SH, Sawa A (2005) p53 mediates cellular dysfunction and behavioral abnormalities in Huntington’s disease. Neuron 47(1):29–41. https://doi.org/10.1016/j.neuron.2005.06.005

    Article  CAS  PubMed  Google Scholar 

  5. Bretaud S, Allen C, Ingham PW, Bandmann O (2007) p53-dependent neuronal cell death in a DJ-1-deficient zebrafish model of Parkinson’s disease. J Neurochem 100(6):1626–1635. https://doi.org/10.1111/j.1471-4159.2006.04291.x

    Article  CAS  PubMed  Google Scholar 

  6. Culmsee C, Mattson MP (2005) p53 in neuronal apoptosis. Biochem Biophys Res Commun 331(3):761–777. https://doi.org/10.1016/j.bbrc.2005.03.149

    Article  CAS  PubMed  Google Scholar 

  7. Duan W, Zhu X, Ladenheim B, Yu QS, Guo Z, Oyler J, Cutler RG, Cadet JL, Greig NH, Mattson MP (2002) p53 inhibitors preserve dopamine neurons and motor function in experimental parkinsonism. Ann Neurol 52(5):597–606. https://doi.org/10.1002/ana.10350

    Article  CAS  PubMed  Google Scholar 

  8. Barlow JL, Drynan LF, Hewett DR, Holmes LR, Lorenzo-Abalde S, Lane AL, Jolin HE, Pannell R, Middleton AJ, Wong SH, Warren AJ, Wainscoat JS, Boultwood J, McKenzie AN (2010) A p53-dependent mechanism underlies macrocytic anemia in a mouse model of human 5q- syndrome. Nat Med 16(1):59–66. https://doi.org/10.1038/nm.2063

    Article  CAS  PubMed  Google Scholar 

  9. Jones NC, Lynn ML, Gaudenz K, Sakai D, Aoto K, Rey JP, Glynn EF, Ellington L, Du C, Dixon J, Dixon MJ, Trainor PA (2008) Prevention of the neurocristopathy treacher collins syndrome through inhibition of p53 function. Nat Med 14(2):125–133. https://doi.org/10.1038/nm1725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. McGowan KA, Li JZ, Park CY, Beaudry V, Tabor HK, Sabnis AJ, Zhang W, Fuchs H, de Angelis MH, Myers RM, Attardi LD, Barsh GS (2008) Ribosomal mutations cause p53-mediated dark skin and pleiotropic effects. Nat Genet 40(8):963–970. https://doi.org/10.1038/ng.188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Leri A, Liu Y, Malhotra A, Li Q, Stiegler P, Claudio PP, Giordano A, Kajstura J, Hintze TH, Anversa P (1998) Pacing-induced heart failure in dogs enhances the expression of p53 and p53-dependent genes in ventricular myocytes. Circulation 97(2):194–203. https://doi.org/10.1161/01.cir.97.2.194

    Article  CAS  PubMed  Google Scholar 

  12. Song H, Conte JV Jr, Foster AH, McLaughlin JS, Wei C (1999) Increased p53 protein expression in human failing myocardium. J Heart Lung Trans 18(8):744–749. https://doi.org/10.1016/s1053-2498(98)00039-4

    Article  CAS  Google Scholar 

  13. Zhang Q, He X, Chen L, Zhang C, Gao X, Yang Z, Liu G (2012) Synergistic regulation of p53 by Mdm2 and Mdm4 is critical in cardiac endocardial cushion morphogenesis during heart development. J Pathol 228(3):416–428. https://doi.org/10.1002/path.4077

    Article  CAS  PubMed  Google Scholar 

  14. Mak TW, Hauck L, Grothe D, Billia F (2017) p53 regulates the cardiac transcriptome. Proc Natl Acad Sci USA 114(9):2331–2336. https://doi.org/10.1073/pnas.1621436114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Chatterjee A, Mir SA, Dutta D, Mitra A, Pathak K, Sarkar S (2011) Analysis of p53 and NF-kappaB signaling in modulating the cardiomyocyte fate during hypertrophy. J Cell Physiol 226(10):2543–2554. https://doi.org/10.1002/jcp.22599

    Article  CAS  PubMed  Google Scholar 

  16. Nakamura H, Matoba S, Iwai-Kanai E, Kimata M, Hoshino A, Nakaoka M, Katamura M, Okawa Y, Ariyoshi M, Mita Y, Ikeda K, Okigaki M, Adachi S, Tanaka H, Takamatsu T, Matsubara H (2012) p53 promotes cardiac dysfunction in diabetic mellitus caused by excessive mitochondrial respiration-mediated reactive oxygen species generation and lipid accumulation. Circ Heart Fail 5(1):106–115. https://doi.org/10.1161/CIRCHEARTFAILURE.111.961565

    Article  CAS  PubMed  Google Scholar 

  17. Mercer J, Figg N, Stoneman V, Braganza D, Bennett MR (2005) Endogenous p53 protects vascular smooth muscle cells from apoptosis and reduces atherosclerosis in ApoE knockout mice. Circ Res 96(6):667–674. https://doi.org/10.1161/01.RES.0000161069.15577.ca

    Article  CAS  PubMed  Google Scholar 

  18. Xu T, Ding W, Ao X, Chu X, Wan Q, Wang Y, Xiao D, Yu W, Li M, Yu F, Wang J (2019) ARC regulates programmed necrosis and myocardial ischemia/reperfusion injury through the inhibition of mPTP opening. Redox Biol 20:414–426. https://doi.org/10.1016/j.redox.2018.10.023

    Article  CAS  PubMed  Google Scholar 

  19. Collaborators GBDCHD (2020) Global, regional, and national burden of congenital heart disease, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet Child Adolesc Health 4(3):185–200. https://doi.org/10.1016/S2352-4642(19)30402-X

    Article  Google Scholar 

  20. Moreau JLM, Kesteven S, Martin E, Lau KS, Yam MX, O’Reilly VC, Del Monte-Nieto G, Baldini A, Feneley MP, Moon AM, Harvey RP, Sparrow DB, Chapman G, Dunwoodie SL (2019) Gene-environment interaction impacts on heart development and embryo survival. Development. https://doi.org/10.1242/dev.172957

    Article  PubMed  Google Scholar 

  21. Van Nostrand JL, Brady CA, Jung H, Fuentes DR, Kozak MM, Johnson TM, Lin CY, Lin CJ, Swiderski DL, Vogel H, Bernstein JA, Attie-Bitach T, Chang CP, Wysocka J, Martin DM, Attardi LD (2014) Inappropriate p53 activation during development induces features of CHARGE syndrome. Nature 514(7521):228–232. https://doi.org/10.1038/nature13585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Frey N, Olson EN (2003) Cardiac hypertrophy: the good, the bad, and the ugly. Annu Rev Physiol 65:45–79. https://doi.org/10.1146/annurev.physiol.65.092101.142243

    Article  CAS  PubMed  Google Scholar 

  23. Levy D, Garrison RJ, Savage DD, Kannel WB, Castelli WP (1990) Prognostic implications of echocardiographically determined left ventricular mass in the Framingham Heart Study. N Engl J Med 322(22):1561–1566. https://doi.org/10.1056/NEJM199005313222203

    Article  CAS  PubMed  Google Scholar 

  24. Nomura S, Satoh M, Fujita T, Higo T, Sumida T, Ko T, Yamaguchi T, Tobita T, Naito AT, Ito M, Fujita K, Harada M, Toko H, Kobayashi Y, Ito K, Takimoto E, Akazawa H, Morita H, Aburatani H, Komuro I (2018) Cardiomyocyte gene programs encoding morphological and functional signatures in cardiac hypertrophy and failure. Nat Commun 9(1):4435. https://doi.org/10.1038/s41467-018-06639-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Sheng R, Gu ZL, Xie ML, Zhou WX, Guo CY (2007) EGCG inhibits cardiomyocyte apoptosis in pressure overload-induced cardiac hypertrophy and protects cardiomyocytes from oxidative stress in rats. Acta Pharmacol Sin 28(2):191–201. https://doi.org/10.1111/j.1745-7254.2007.00495.x

    Article  CAS  PubMed  Google Scholar 

  26. Frangogiannis NG (2015) Pathophysiology of Myocardial Infarction. Compr Physiol 5(4):1841–1875. https://doi.org/10.1002/cphy.c150006

    Article  PubMed  Google Scholar 

  27. Liu CY, Zhang YH, Li RB, Zhou LY, An T, Zhang RC, Zhai M, Huang Y, Yan KW, Dong YH, Ponnusamy M, Shan C, Xu S, Wang Q, Zhang YH, Zhang J, Wang K (2018) LncRNA CAIF inhibits autophagy and attenuates myocardial infarction by blocking p53-mediated myocardin transcription. Nat Commun 9(1):29. https://doi.org/10.1038/s41467-017-02280-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Gogna R, Madan E, Khan M, Pati U, Kuppusamy P (2013) p53’s choice of myocardial death or survival: Oxygen protects infarct myocardium by recruiting p53 on NOS3 promoter through regulation of p53-Lys(118) acetylation. EMBO Mol Med 5(11):1662–1683. https://doi.org/10.1002/emmm.201202055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Tan Y, Zhang Z, Zheng C, Wintergerst KA, Keller BB, Cai L (2020) Mechanisms of diabetic cardiomyopathy and potential therapeutic strategies: preclinical and clinical evidence. Nat Rev Cardiol. https://doi.org/10.1038/s41569-020-0339-2

    Article  PubMed  PubMed Central  Google Scholar 

  30. Dillmann WH (2019) Diabetic cardiomyopathy. Circ Res 124(8):1160–1162. https://doi.org/10.1161/CIRCRESAHA.118.314665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Gu J, Wang S, Guo H, Tan Y, Liang Y, Feng A, Liu Q, Damodaran C, Zhang Z, Keller BB, Zhang C, Cai L (2018) Inhibition of p53 prevents diabetic cardiomyopathy by preventing early-stage apoptosis and cell senescence, reduced glycolysis, and impaired angiogenesis. Cell Death Dis 9(2):82. https://doi.org/10.1038/s41419-017-0093-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Hoshino A, Mita Y, Okawa Y, Ariyoshi M, Iwai-Kanai E, Ueyama T, Ikeda K, Ogata T, Matoba S (2013) Cytosolic p53 inhibits Parkin-mediated mitophagy and promotes mitochondrial dysfunction in the mouse heart. Nat Commun 4:2308. https://doi.org/10.1038/ncomms3308

    Article  CAS  PubMed  Google Scholar 

  33. Liu X, Chua CC, Gao J, Chen Z, Landy CL, Hamdy R, Chua BH (2004) Pifithrin-alpha protects against doxorubicin-induced apoptosis and acute cardiotoxicity in mice. Am J Physiol Heart Circ Physiol 286(3):H933-939. https://doi.org/10.1152/ajpheart.00759.2003

    Article  CAS  PubMed  Google Scholar 

  34. Renu K, V GA, P BT, Arunachalam S, (2018) Molecular mechanism of doxorubicin-induced cardiomyopathy - An update. Eur J Pharmacol 818:241–253. https://doi.org/10.1016/j.ejphar.2017.10.043

    Article  CAS  PubMed  Google Scholar 

  35. Li J, Wang PY, Long NA, Zhuang J, Springer DA, Zou J, Lin Y, Bleck CKE, Park JH, Kang JG, Hwang PM (2019) p53 prevents doxorubicin cardiotoxicity independently of its prototypical tumor suppressor activities. Proc Natl Acad Sci USA 116(39):19626–19634. https://doi.org/10.1073/pnas.1904979116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Saleme B, Gurtu V, Zhang Y, Kinnaird A, Boukouris AE, Gopal K, Ussher JR, Sutendra G (2019) Tissue-specific regulation of p53 by PKM2 is redox dependent and provides a therapeutic target for anthracycline-induced cardiotoxicity. Sci Transl Med. https://doi.org/10.1126/scitranslmed.aau8866

    Article  PubMed  Google Scholar 

  37. Ihling C, Haendeler J, Menzel G, Hess RD, Fraedrich G, Schaefer HE, Zeiher AM (1998) Co-expression of p53 and MDM2 in human atherosclerosis: implications for the regulation of cellularity of atherosclerotic lesions. J Pathol 185(3):303–312. https://doi.org/10.1002/(SICI)1096-9896(199807)185:3%3c303::AID-PATH106%3e3.0.CO;2-P

    Article  CAS  PubMed  Google Scholar 

  38. Manfredi JJ (2010) The Mdm2-p53 relationship evolves: Mdm2 swings both ways as an oncogene and a tumor suppressor. Genes Dev 24(15):1580–1589. https://doi.org/10.1101/gad.1941710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kruse JP, Gu W (2009) Modes of p53 regulation. Cell 137(4):609–622. https://doi.org/10.1016/j.cell.2009.04.050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kubbutat MH, Jones SN, Vousden KH (1997) Regulation of p53 stability by Mdm2. Nature 387(6630):299–303. https://doi.org/10.1038/387299a0

    Article  CAS  PubMed  Google Scholar 

  41. Birks EJ, Latif N, Enesa K, Folkvang T, le Luong A, Sarathchandra P, Khan M, Ovaa H, Terracciano CM, Barton PJ, Yacoub MH, Evans PC (2008) Elevated p53 expression is associated with dysregulation of the ubiquitin-proteasome system in dilated cardiomyopathy. Cardiovasc Res 79(3):472–480. https://doi.org/10.1093/cvr/cvn083

    Article  CAS  PubMed  Google Scholar 

  42. Predmore JM, Wang P, Davis F, Bartolone S, Westfall MV, Dyke DB, Pagani F, Powell SR, Day SM (2010) Ubiquitin proteasome dysfunction in human hypertrophic and dilated cardiomyopathies. Circulation 121(8):997–1004. https://doi.org/10.1161/CIRCULATIONAHA.109.904557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Eble DM, Spragia ML, Ferguson AG, Samarel AM (1999) Sarcomeric myosin heavy chain is degraded by the proteasome. Cell Tissue Res 296(3):541–548. https://doi.org/10.1007/s004410051315

    Article  CAS  PubMed  Google Scholar 

  44. Li HH, Kedar V, Zhang C, McDonough H, Arya R, Wang DZ, Patterson C (2004) Atrogin-1/muscle atrophy F-box inhibits calcineurin-dependent cardiac hypertrophy by participating in an SCF ubiquitin ligase complex. J Clin Invest 114(8):1058–1071. https://doi.org/10.1172/JCI22220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Tsukamoto O, Minamino T, Okada K, Shintani Y, Takashima S, Kato H, Liao Y, Okazaki H, Asai M, Hirata A, Fujita M, Asano Y, Yamazaki S, Asanuma H, Hori M, Kitakaze M (2006) Depression of proteasome activities during the progression of cardiac dysfunction in pressure-overloaded heart of mice. Biochem Biophys Res Commun 340(4):1125–1133. https://doi.org/10.1016/j.bbrc.2005.12.120

    Article  CAS  PubMed  Google Scholar 

  46. Balasubramanian S, Mani S, Shiraishi H, Johnston RK, Yamane K, Willey CD, Gt Cooper, Tuxworth WJ, Kuppuswamy D (2006) Enhanced ubiquitination of cytoskeletal proteins in pressure overloaded myocardium is accompanied by changes in specific E3 ligases. J Mol Cell Cardiol 41(4):669–679. https://doi.org/10.1016/j.yjmcc.2006.04.022

    Article  CAS  PubMed  Google Scholar 

  47. Karni-Schmidt O, Lokshin M, Prives C (2016) The roles of MDM2 and MDMX in cancer. Annu Rev Pathol 11:617–644. https://doi.org/10.1146/annurev-pathol-012414-040349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Xiong S, Van Pelt CS, Elizondo-Fraire AC, Fernandez-Garcia B, Lozano G (2007) Loss of Mdm4 results in p53-dependent dilated cardiomyopathy. Circulation 115(23):2925–2930. https://doi.org/10.1161/CIRCULATIONAHA.107.689901

    Article  CAS  PubMed  Google Scholar 

  49. McDonough H, Patterson C (2003) CHIP: a link between the chaperone and proteasome systems. Cell Stress Chaperones 8(4):303–308. https://doi.org/10.1379/1466-1268(2003)008%3c0303:calbtc%3e2.0.co;2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Naito AT, Okada S, Minamino T, Iwanaga K, Liu ML, Sumida T, Nomura S, Sahara N, Mizoroki T, Takashima A, Akazawa H, Nagai T, Shiojima I, Komuro I (2010) Promotion of CHIP-mediated p53 degradation protects the heart from ischemic injury. Circ Res 106(11):1692–1702. https://doi.org/10.1161/CIRCRESAHA.109.214346

    Article  CAS  PubMed  Google Scholar 

  51. Heo KS, Lee H, Nigro P, Thomas T, Le NT, Chang E, McClain C, Reinhart-King CA, King MR, Berk BC, Fujiwara K, Woo CH, Abe J (2011) PKCzeta mediates disturbed flow-induced endothelial apoptosis via p53 SUMOylation. J Cell Biol 193(5):867–884. https://doi.org/10.1083/jcb.201010051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Chua CC, Liu X, Gao J, Hamdy RC, Chua BH (2006) Multiple actions of pifithrin-alpha on doxorubicin-induced apoptosis in rat myoblastic H9c2 cells. Am J Physiol Heart Circ Physiol 290(6):H2606-2613. https://doi.org/10.1152/ajpheart.01138.2005

    Article  CAS  PubMed  Google Scholar 

  53. Zhou SF, Yuan J, Liao MY, Xia N, Tang TT, Li JJ, Jiao J, Dong WY, Nie SF, Zhu ZF, Zhang WC, Lv BJ, Xiao H, Wang Q, Tu X, Liao YH, Shi GP, Cheng X (2014) IL-17A promotes ventricular remodeling after myocardial infarction. J Mol Med (Berl) 92(10):1105–1116. https://doi.org/10.1007/s00109-014-1176-8

    Article  CAS  Google Scholar 

  54. Su D, Guan L, Gao Q, Li Q, Shi C, Liu Y, Sun L, Lu C, Ma X (1863) Zhao J (2017) ROCK1/p53/NOXA signaling mediates cardiomyocyte apoptosis in response to high glucose in vitro and vivo. Biochim Biophys Acta Mol Basis Dis 4:936–946. https://doi.org/10.1016/j.bbadis.2017.01.021

    Article  CAS  Google Scholar 

  55. Fiordaliso F, Leri A, Cesselli D, Limana F, Safai B, Nadal-Ginard B, Anversa P, Kajstura J (2001) Hyperglycemia activates p53 and p53-regulated genes leading to myocyte cell death. Diabetes 50(10):2363–2375. https://doi.org/10.2337/diabetes.50.10.2363

    Article  CAS  PubMed  Google Scholar 

  56. Vahtola E, Louhelainen M, Forsten H, Merasto S, Raivio J, Kaheinen P, Kyto V, Tikkanen I, Levijoki J, Mervaala E (2010) Sirtuin1-p53, forkhead box O3a, p38 and post-infarct cardiac remodeling in the spontaneously diabetic Goto-Kakizaki rat. Cardiovasc Diabetol 9:5. https://doi.org/10.1186/1475-2840-9-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Mu W, Zhang Q, Tang X, Fu W, Zheng W, Lu Y, Li H, Wei Y, Li L, She Z, Chen H, Liu D (2014) Overexpression of a dominant-negative mutant of SIRT1 in mouse heart causes cardiomyocyte apoptosis and early-onset heart failure. Sci China Life Sci 57(9):915–924. https://doi.org/10.1007/s11427-014-4687-1

    Article  CAS  PubMed  Google Scholar 

  58. Nagpal V, Rai R, Place AT, Murphy SB, Verma SK, Ghosh AK, Vaughan DE (2016) MiR-125b is critical for fibroblast-to-myofibroblast transition and cardiac fibrosis. Circulation 133(3):291–301. https://doi.org/10.1161/CIRCULATIONAHA.115.018174

    Article  CAS  PubMed  Google Scholar 

  59. Zhou Y, Richards AM, Wang P (2019) MicroRNA-221 Is cardioprotective and anti-fibrotic in a rat model of myocardial infarction. Mol Ther Nucleic Acids 17:185–197. https://doi.org/10.1016/j.omtn.2019.05.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Wu G, Cai J, Han Y, Chen J, Huang ZP, Chen C, Cai Y, Huang H, Yang Y, Liu Y, Xu Z, He D, Zhang X, Hu X, Pinello L, Zhong D, He F, Yuan GC, Wang DZ, Zeng C (2014) LincRNA-p21 regulates neointima formation, vascular smooth muscle cell proliferation, apoptosis, and atherosclerosis by enhancing p53 activity. Circulation 130(17):1452–1465. https://doi.org/10.1161/CIRCULATIONAHA.114.011675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Fu BC, Lang JL, Zhang DY, Sun L, Chen W, Liu W, Liu KY, Ma CY, Jiang SL, Li RK, Tian H (2017) Suppression of miR-34a expression in the myocardium protects against ischemia-reperfusion injury through SIRT1 protective pathway. Stem Cells Dev 26(17):1270–1282. https://doi.org/10.1089/scd.2017.0062

    Article  CAS  PubMed  Google Scholar 

  62. Sano M, Minamino T, Toko H, Miyauchi H, Orimo M, Qin Y, Akazawa H, Tateno K, Kayama Y, Harada M, Shimizu I, Asahara T, Hamada H, Tomita S, Molkentin JD, Zou Y, Komuro I (2007) p53-induced inhibition of Hif-1 causes cardiac dysfunction during pressure overload. Nature 446(7134):444–448. https://doi.org/10.1038/nature05602

    Article  CAS  PubMed  Google Scholar 

  63. Tsutsui H, Kinugawa S, Matsushima S (2011) Oxidative stress and heart failure. Am J Physiol Heart Circ Physiol 301(6):H2181-2190. https://doi.org/10.1152/ajpheart.00554.2011

    Article  CAS  PubMed  Google Scholar 

  64. Carr AM (2000) Cell cycle. Piecing together the p53 puzzle. Science 287(5459):1765–1766. https://doi.org/10.1126/science.287.5459.1765

    Article  CAS  PubMed  Google Scholar 

  65. Jaakkola P, Mole DR, Tian YM, Wilson MI, Gielbert J, Gaskell SJ, von Kriegsheim A, Hebestreit HF, Mukherji M, Schofield CJ, Maxwell PH, Pugh CW, Ratcliffe PJ (2001) Targeting of HIF-alpha to the von Hippel-Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation. Science 292(5516):468–472. https://doi.org/10.1126/science.1059796

    Article  CAS  PubMed  Google Scholar 

  66. Ohh M, Park CW, Ivan M, Hoffman MA, Kim TY, Huang LE, Pavletich N, Chau V, Kaelin WG (2000) Ubiquitination of hypoxia-inducible factor requires direct binding to the beta-domain of the von Hippel-Lindau protein. Nat Cell Biol 2(7):423–427. https://doi.org/10.1038/35017054

    Article  CAS  PubMed  Google Scholar 

  67. Tanimoto K, Makino Y, Pereira T, Poellinger L (2000) Mechanism of regulation of the hypoxia-inducible factor-1 alpha by the von Hippel-Lindau tumor suppressor protein. EMBO J 19(16):4298–4309. https://doi.org/10.1093/emboj/19.16.4298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Semenza GL (2012) Hypoxia-inducible factors in physiology and medicine. Cell 148(3):399–408. https://doi.org/10.1016/j.cell.2012.01.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Semenza GL (2014) Hypoxia-inducible factor 1 and cardiovascular disease. Annu Rev Physiol 76:39–56. https://doi.org/10.1146/annurev-physiol-021113-170322

    Article  CAS  PubMed  Google Scholar 

  70. Joshi S, Singh AR, Durden DL (2014) MDM2 regulates hypoxic hypoxia-inducible factor 1alpha stability in an E3 ligase, proteasome, and PTEN-phosphatidylinositol 3-kinase-AKT-dependent manner. J Biol Chem 289(33):22785–22797. https://doi.org/10.1074/jbc.M114.587493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Zhou CH, Zhang XP, Liu F, Wang W (2015) Modeling the interplay between the HIF-1 and p53 pathways in hypoxia. Sci Rep 5:13834. https://doi.org/10.1038/srep13834

    Article  PubMed  PubMed Central  Google Scholar 

  72. Zou Y, Li J, Ma H, Jiang H, Yuan J, Gong H, Liang Y, Guan A, Wu J, Li L, Zhou N, Niu Y, Sun A, Nakai A, Wang P, Takano H, Komuro I, Ge J (2011) Heat shock transcription factor 1 protects heart after pressure overload through promoting myocardial angiogenesis in male mice. J Mol Cell Cardiol 51(5):821–829. https://doi.org/10.1016/j.yjmcc.2011.07.030

    Article  CAS  PubMed  Google Scholar 

  73. Gogiraju R, Xu X, Bochenek ML, Steinbrecher JH, Lehnart SE, Wenzel P, Kessel M, Zeisberg EM, Dobbelstein M, Schafer K (2015) Endothelial p53 deletion improves angiogenesis and prevents cardiac fibrosis and heart failure induced by pressure overload in mice. J Am Heart Assoc. https://doi.org/10.1161/JAHA.115.001770

    Article  PubMed  PubMed Central  Google Scholar 

  74. Yoon YS, Uchida S, Masuo O, Cejna M, Park JS, Gwon HC, Kirchmair R, Bahlman F, Walter D, Curry C, Hanley A, Isner JM, Losordo DW (2005) Progressive attenuation of myocardial vascular endothelial growth factor expression is a seminal event in diabetic cardiomyopathy: restoration of microvascular homeostasis and recovery of cardiac function in diabetic cardiomyopathy after replenishment of local vascular endothelial growth factor. Circulation 111(16):2073–2085. https://doi.org/10.1161/01.CIR.0000162472.52990.36

    Article  CAS  PubMed  Google Scholar 

  75. Guo J, Mihic A, Wu J, Zhang Y, Singh K, Dhingra S, Weisel RD, Li RK (2015) Canopy 2 attenuates the transition from compensatory hypertrophy to dilated heart failure in hypertrophic cardiomyopathy. Eur Heart J 36(37):2530–2540. https://doi.org/10.1093/eurheartj/ehv294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Augustyn KE, Merino EJ, Barton JK (2007) A role for DNA-mediated charge transport in regulating p53: oxidation of the DNA-bound protein from a distance. Proc Natl Acad Sci USA 104(48):18907–18912. https://doi.org/10.1073/pnas.0709326104

    Article  PubMed  PubMed Central  Google Scholar 

  77. Yoshida M, Shiojima I, Ikeda H, Komuro I (2009) Chronic doxorubicin cardiotoxicity is mediated by oxidative DNA damage-ATM-p53-apoptosis pathway and attenuated by pitavastatin through the inhibition of Rac1 activity. J Mol Cell Cardiol 47(5):698–705. https://doi.org/10.1016/j.yjmcc.2009.07.024

    Article  CAS  PubMed  Google Scholar 

  78. Liu B, Chen Y, St Clair DK (2008) ROS and p53: a versatile partnership. Free Radic Biol Med 44(8):1529–1535. https://doi.org/10.1016/j.freeradbiomed.2008.01.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Oskarsson HJ, Coppey L, Weiss RM, Li WG (2000) Antioxidants attenuate myocyte apoptosis in the remote non-infarcted myocardium following large myocardial infarction. Cardiovasc Res 45(3):679–687. https://doi.org/10.1016/s0008-6363(99)00400-9

    Article  CAS  PubMed  Google Scholar 

  80. Brady CA, Attardi LD (2010) p53 at a glance. J Cell Sci 123(Pt 15):2527–2532. https://doi.org/10.1242/jcs.064501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Dong Y, Chen H, Gao J, Liu Y, Li J, Wang J (2019) Molecular machinery and interplay of apoptosis and autophagy in coronary heart disease. J Mol Cell Cardiol 136:27–41. https://doi.org/10.1016/j.yjmcc.2019.09.001

    Article  CAS  PubMed  Google Scholar 

  82. Fridman JS, Lowe SW (2003) Control of apoptosis by p53. Oncogene 22(56):9030–9040. https://doi.org/10.1038/sj.onc.1207116

    Article  CAS  PubMed  Google Scholar 

  83. Wei MC, Zong WX, Cheng EH, Lindsten T, Panoutsakopoulou V, Ross AJ, Roth KA, MacGregor GR, Thompson CB, Korsmeyer SJ (2001) Proapoptotic BAX and BAK: a requisite gateway to mitochondrial dysfunction and death. Science 292(5517):727–730. https://doi.org/10.1126/science.1059108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Delbridge AR, Grabow S, Strasser A, Vaux DL (2016) Thirty years of BCL-2: translating cell death discoveries into novel cancer therapies. Nat Rev Cancer 16(2):99–109. https://doi.org/10.1038/nrc.2015.17

    Article  CAS  PubMed  Google Scholar 

  85. Mandl A, Huong Pham L, Toth K, Zambetti G, Erhardt P (2011) Puma deletion delays cardiac dysfunction in murine heart failure models through attenuation of apoptosis. Circulation 124(1):31–39. https://doi.org/10.1161/CIRCULATIONAHA.110.988303

    Article  CAS  PubMed  Google Scholar 

  86. Mantawy EM, Esmat A, El-Bakly WM, Salah ElDin RA, El-Demerdash E (2017) Mechanistic clues to the protective effect of chrysin against doxorubicin-induced cardiomyopathy: plausible roles of p53 MAPK and AKT pathways. Sci Rep 7(1):4795. https://doi.org/10.1038/s41598-017-05005-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Saelens X, Festjens N, Vande Walle L, van Gurp M, van Loo G, Vandenabeele P (2004) Toxic proteins released from mitochondria in cell death. Oncogene 23(16):2861–2874. https://doi.org/10.1038/sj.onc.1207523

    Article  CAS  PubMed  Google Scholar 

  88. Hill MM, Adrain C, Duriez PJ, Creagh EM, Martin SJ (2004) Analysis of the composition, assembly kinetics and activity of native Apaf-1 apoptosomes. EMBO J 23(10):2134–2145. https://doi.org/10.1038/sj.emboj.7600210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Joza N, Susin SA, Daugas E, Stanford WL, Cho SK, Li CY, Sasaki T, Elia AJ, Cheng HY, Ravagnan L, Ferri KF, Zamzami N, Wakeham A, Hakem R, Yoshida H, Kong YY, Mak TW, Zuniga-Pflucker JC, Kroemer G, Penninger JM (2001) Essential role of the mitochondrial apoptosis-inducing factor in programmed cell death. Nature 410(6828):549–554. https://doi.org/10.1038/35069004

    Article  CAS  PubMed  Google Scholar 

  90. Schuler M, Green DR (2001) Mechanisms of p53-dependent apoptosis. Biochem Soc Trans 29(Pt 6):684–688. https://doi.org/10.1042/0300-5127:0290684

    Article  CAS  PubMed  Google Scholar 

  91. Hochhauser E, Kivity S, Offen D, Maulik N, Otani H, Barhum Y, Pannet H, Shneyvays V, Shainberg A, Goldshtaub V, Tobar A, Vidne BA (2003) Bax ablation protects against myocardial ischemia-reperfusion injury in transgenic mice. Am J Physiol Heart Circ Physiol 284(6):H2351-2359. https://doi.org/10.1152/ajpheart.00783.2002

    Article  CAS  PubMed  Google Scholar 

  92. Liu J, Ai Y, Niu X, Shang F, Li Z, Liu H, Li W, Ma W, Chen R, Wei T, Li X, Li X (2020) Taurine protects against cardiac dysfunction induced by pressure overload through SIRT1-p53 activation. Chem Biol Interact 317:108972. https://doi.org/10.1016/j.cbi.2020.108972

    Article  CAS  PubMed  Google Scholar 

  93. Chen Q, Thompson J, Hu Y, Das A, Lesnefsky EJ (2019) Cardiac specific knockout of p53 decreases ER stress-induced mitochondrial damage. Front Cardiovasc Med 6:10. https://doi.org/10.3389/fcvm.2019.00010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Jiang CC, Lucas K, Avery-Kiejda KA, Wade M, deBock CE, Thorne RF, Allen J, Hersey P, Zhang XD (2008) Up-regulation of Mcl-1 is critical for survival of human melanoma cells upon endoplasmic reticulum stress. Cancer Res 68(16):6708–6717. https://doi.org/10.1158/0008-5472.CAN-08-0349

    Article  CAS  PubMed  Google Scholar 

  95. Lin WC, Chuang YC, Chang YS, Lai MD, Teng YN, Su IJ, Wang CC, Lee KH, Hung JH (2012) Endoplasmic reticulum stress stimulates p53 expression through NF-kappaB activation. PLoS One 7(7):e39120. https://doi.org/10.1371/journal.pone.0039120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Li J, Lee B, Lee AS (2006) Endoplasmic reticulum stress-induced apoptosis: multiple pathways and activation of p53-up-regulated modulator of apoptosis (PUMA) and NOXA by p53. J Biol Chem 281(11):7260–7270. https://doi.org/10.1074/jbc.M509868200

    Article  CAS  PubMed  Google Scholar 

  97. Zhang F, Hamanaka RB, Bobrovnikova-Marjon E, Gordan JD, Dai MS, Lu H, Simon MC, Diehl JA (2006) Ribosomal stress couples the unfolded protein response to p53-dependent cell cycle arrest. J Biol Chem 281(40):30036–30045. https://doi.org/10.1074/jbc.M604674200

    Article  CAS  PubMed  Google Scholar 

  98. Giorgi C, Bonora M, Sorrentino G, Missiroli S, Poletti F, Suski JM, Galindo Ramirez F, Rizzuto R, Di Virgilio F, Zito E, Pandolfi PP, Wieckowski MR, Mammano F, Del Sal G, Pinton P (2015) p53 at the endoplasmic reticulum regulates apoptosis in a Ca2+-dependent manner. Proc Natl Acad Sci USA 112(6):1779–1784. https://doi.org/10.1073/pnas.1410723112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Fusee LTS, Marin M, Fahraeus R, Lopez I (2020) Alternative mechanisms of p53 action during the unfolded protein response. Cancers (Basel). https://doi.org/10.3390/cancers12020401

    Article  PubMed Central  Google Scholar 

  100. Ji L, Roth JA (2008) Tumor suppressor FUS1 signaling pathway. J Thorac Oncol 3(4):327–330. https://doi.org/10.1097/JTO.0b013e31816bce65

    Article  PubMed  PubMed Central  Google Scholar 

  101. Wu H, Zhao ZA, Liu J, Hao K, Yu Y, Han X, Li J, Wang Y, Lei W, Dong N, Shen Z, Hu S (2018) Long noncoding RNA Meg3 regulates cardiomyocyte apoptosis in myocardial infarction. Gene Ther 25(8):511–523. https://doi.org/10.1038/s41434-018-0045-4

    Article  CAS  PubMed  Google Scholar 

  102. Singh R, Chaudhary P, Arya R (2018) Role of IGF-1R in ameliorating apoptosis of GNE deficient cells. Sci Rep 8(1):7323. https://doi.org/10.1038/s41598-018-25510-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Yu XY, Geng YJ, Liang JL, Lin QX, Lin SG, Zhang S, Li Y (2010) High levels of glucose induce apoptosis in cardiomyocyte via epigenetic regulation of the insulin-like growth factor receptor. Exp Cell Res 316(17):2903–2909. https://doi.org/10.1016/j.yexcr.2010.07.004

    Article  CAS  PubMed  Google Scholar 

  104. Brady CA, Jiang D, Mello SS, Johnson TM, Jarvis LA, Kozak MM, Kenzelmann Broz D, Basak S, Park EJ, McLaughlin ME, Karnezis AN, Attardi LD (2011) Distinct p53 transcriptional programs dictate acute DNA-damage responses and tumor suppression. Cell 145(4):571–583. https://doi.org/10.1016/j.cell.2011.03.035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Ai TJ, Sun JY, Du LJ, Shi C, Li C, Sun XN, Liu Y, Li L, Xia Z, Jia L, Liu J, Duan SZ (2018) Inhibition of neddylation by MLN4924 improves neointimal hyperplasia and promotes apoptosis of vascular smooth muscle cells through p53 and p62. Cell Death Differ 25(2):319–329. https://doi.org/10.1038/cdd.2017.160

    Article  CAS  PubMed  Google Scholar 

  106. Bennett MR, Sinha S, Owens GK (2016) Vascular smooth muscle cells in atherosclerosis. Circ Res 118(4):692–702. https://doi.org/10.1161/CIRCRESAHA.115.306361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Choi AM, Ryter SW, Levine B (2013) Autophagy in human health and disease. N Engl J Med 368(7):651–662. https://doi.org/10.1056/NEJMra1205406

    Article  CAS  PubMed  Google Scholar 

  108. Mizushima N, Levine B, Cuervo AM, Klionsky DJ (2008) Autophagy fights disease through cellular self-digestion. Nature 451(7182):1069–1075. https://doi.org/10.1038/nature06639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Tasdemir E, Maiuri MC, Galluzzi L, Vitale I, Djavaheri-Mergny M, D’Amelio M, Criollo A, Morselli E, Zhu C, Harper F, Nannmark U, Samara C, Pinton P, Vicencio JM, Carnuccio R, Moll UM, Madeo F, Paterlini-Brechot P, Rizzuto R, Szabadkai G, Pierron G, Blomgren K, Tavernarakis N, Codogno P, Cecconi F, Kroemer G (2008) Regulation of autophagy by cytoplasmic p53. Nat Cell Biol 10(6):676–687. https://doi.org/10.1038/ncb1730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Maiuri MC, Galluzzi L, Morselli E, Kepp O, Malik SA, Kroemer G (2010) Autophagy regulation by p53. Curr Opin Cell Biol 22(2):181–185. https://doi.org/10.1016/j.ceb.2009.12.001

    Article  CAS  PubMed  Google Scholar 

  111. Wang EY, Gang H, Aviv Y, Dhingra R, Margulets V, Kirshenbaum LA (2013) p53 mediates autophagy and cell death by a mechanism contingent on Bnip3. Hypertension 62(1):70–77. https://doi.org/10.1161/HYPERTENSIONAHA.113.01028

    Article  CAS  PubMed  Google Scholar 

  112. Hoshino A, Matoba S, Iwai-Kanai E, Nakamura H, Kimata M, Nakaoka M, Katamura M, Okawa Y, Ariyoshi M, Mita Y, Ikeda K, Ueyama T, Okigaki M, Matsubara H (2012) p53-TIGAR axis attenuates mitophagy to exacerbate cardiac damage after ischemia. J Mol Cell Cardiol 52(1):175–184. https://doi.org/10.1016/j.yjmcc.2011.10.008

    Article  CAS  PubMed  Google Scholar 

  113. Wang D, Chang PS, Wang Z, Sutherland L, Richardson JA, Small E, Krieg PA, Olson EN (2001) Activation of cardiac gene expression by myocardin, a transcriptional cofactor for serum response factor. Cell 105(7):851–862. https://doi.org/10.1016/s0092-8674(01)00404-4

    Article  CAS  PubMed  Google Scholar 

  114. Ma X, Liu H, Foyil SR, Godar RJ, Weinheimer CJ, Hill JA, Diwan A (2012) Impaired autophagosome clearance contributes to cardiomyocyte death in ischemia/reperfusion injury. Circulation 125(25):3170–3181. https://doi.org/10.1161/CIRCULATIONAHA.111.041814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Zhang J, Ney PA (2009) Role of BNIP3 and NIX in cell death, autophagy, and mitophagy. Cell Death Differ 16(7):939–946. https://doi.org/10.1038/cdd.2009.16

    Article  CAS  PubMed  Google Scholar 

  116. Xiao C, Wang K, Xu Y, Hu H, Zhang N, Wang Y, Zhong Z, Zhao J, Li Q, Zhu D, Ke C, Zhong S, Wu X, Yu H, Zhu W, Chen J, Zhang J, Wang J, Hu X (2018) Transplanted mesenchymal stem cells reduce autophagic flux in infarcted hearts via the exosomal transfer of miR-125b. Circ Res 123(5):564–578. https://doi.org/10.1161/CIRCRESAHA.118.312758

    Article  CAS  PubMed  Google Scholar 

  117. Tanaka A, Cleland MM, Xu S, Narendra DP, Suen DF, Karbowski M, Youle RJ (2010) Proteasome and p97 mediate mitophagy and degradation of mitofusins induced by Parkin. J Cell Biol 191(7):1367–1380. https://doi.org/10.1083/jcb.201007013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Bravo-San Pedro JM, Kroemer G, Galluzzi L (2017) Autophagy and mitophagy in cardiovascular disease. Circ Res 120(11):1812–1824. https://doi.org/10.1161/CIRCRESAHA.117.311082

    Article  CAS  PubMed  Google Scholar 

  119. Edinger AL, Thompson CB (2004) Death by design: apoptosis, necrosis and autophagy. Curr Opin Cell Biol 16(6):663–669. https://doi.org/10.1016/j.ceb.2004.09.011

    Article  CAS  PubMed  Google Scholar 

  120. Zhu H, Sun A (2018) Programmed necrosis in heart disease: Molecular mechanisms and clinical implications. J Mol Cell Cardiol 116:125–134. https://doi.org/10.1016/j.yjmcc.2018.01.018

    Article  CAS  PubMed  Google Scholar 

  121. Karch J, Molkentin JD (2014) Identifying the components of the elusive mitochondrial permeability transition pore. Proc Natl Acad Sci U S A 111(29):10396–10397. https://doi.org/10.1073/pnas.1410104111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Vaseva AV, Marchenko ND, Ji K, Tsirka SE, Holzmann S, Moll UM (2012) p53 opens the mitochondrial permeability transition pore to trigger necrosis. Cell 149(7):1536–1548. https://doi.org/10.1016/j.cell.2012.05.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Baines CP, Kaiser RA, Purcell NH, Blair NS, Osinska H, Hambleton MA, Brunskill EW, Sayen MR, Gottlieb RA, Dorn GW, Robbins J, Molkentin JD (2005) Loss of cyclophilin D reveals a critical role for mitochondrial permeability transition in cell death. Nature 434(7033):658–662. https://doi.org/10.1038/nature03434

    Article  CAS  PubMed  Google Scholar 

  124. Nakagawa T, Shimizu S, Watanabe T, Yamaguchi O, Otsu K, Yamagata H, Inohara H, Kubo T, Tsujimoto Y (2005) Cyclophilin D-dependent mitochondrial permeability transition regulates some necrotic but not apoptotic cell death. Nature 434(7033):652–658. https://doi.org/10.1038/nature03317

    Article  CAS  PubMed  Google Scholar 

  125. Wang K, Liu F, Liu CY, An T, Zhang J, Zhou LY, Wang M, Dong YH, Li N, Gao JN, Zhao YF, Li PF (2016) The long noncoding RNA NRF regulates programmed necrosis and myocardial injury during ischemia and reperfusion by targeting miR-873. Cell Death Differ 23(8):1394–1405. https://doi.org/10.1038/cdd.2016.28

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. He S, Wang L, Miao L, Wang T, Du F, Zhao L, Wang X (2009) Receptor interacting protein kinase-3 determines cellular necrotic response to TNF-alpha. Cell 137(6):1100–1111. https://doi.org/10.1016/j.cell.2009.05.021

    Article  CAS  PubMed  Google Scholar 

  127. Villeneuve C, Guilbeau-Frugier C, Sicard P, Lairez O, Ordener C, Duparc T, De Paulis D, Couderc B, Spreux-Varoquaux O, Tortosa F, Garnier A, Knauf C, Valet P, Borchi E, Nediani C, Gharib A, Ovize M, Delisle MB, Parini A, Mialet-Perez J (2013) p53-PGC-1alpha pathway mediates oxidative mitochondrial damage and cardiomyocyte necrosis induced by monoamine oxidase-A upregulation: role in chronic left ventricular dysfunction in mice. Antioxid Redox Signal 18(1):5–18. https://doi.org/10.1089/ars.2011.4373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Zhang XD, Qin ZH, Wang J (2010) The role of p53 in cell metabolism. Acta Pharmacol Sin 31(9):1208–1212. https://doi.org/10.1038/aps.2010.151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Buchanan J, Mazumder PK, Hu P, Chakrabarti G, Roberts MW, Yun UJ, Cooksey RC, Litwin SE, Abel ED (2005) Reduced cardiac efficiency and altered substrate metabolism precedes the onset of hyperglycemia and contractile dysfunction in two mouse models of insulin resistance and obesity. Endocrinology 146(12):5341–5349. https://doi.org/10.1210/en.2005-0938

    Article  CAS  PubMed  Google Scholar 

  130. Shackelford DB, Shaw RJ (2009) The LKB1-AMPK pathway: metabolism and growth control in tumour suppression. Nat Rev Cancer 9(8):563–575. https://doi.org/10.1038/nrc2676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Wang PY, Ma W, Park JY, Celi FS, Arena R, Choi JW, Ali QA, Tripodi DJ, Zhuang J, Lago CU, Strong LC, Talagala SL, Balaban RS, Kang JG, Hwang PM (2013) Increased oxidative metabolism in the Li-Fraumeni syndrome. N Engl J Med 368(11):1027–1032. https://doi.org/10.1056/NEJMoa1214091

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Park JY, Wang PY, Matsumoto T, Sung HJ, Ma W, Choi JW, Anderson SA, Leary SC, Balaban RS, Kang JG, Hwang PM (2009) p53 improves aerobic exercise capacity and augments skeletal muscle mitochondrial DNA content. Circ Res 105 (7):705-712, 711 p following 712. doi:https://doi.org/10.1161/CIRCRESAHA.109.205310

  133. Bourdon A, Minai L, Serre V, Jais JP, Sarzi E, Aubert S, Chretien D, de Lonlay P, Paquis-Flucklinger V, Arakawa H, Nakamura Y, Munnich A, Rotig A (2007) Mutation of RRM2B, encoding p53-controlled ribonucleotide reductase (p53R2), causes severe mitochondrial DNA depletion. Nat Genet 39(6):776–780. https://doi.org/10.1038/ng2040

    Article  CAS  PubMed  Google Scholar 

  134. Papadopoulou LC, Sue CM, Davidson MM, Tanji K, Nishino I, Sadlock JE, Krishna S, Walker W, Selby J, Glerum DM, Coster RV, Lyon G, Scalais E, Lebel R, Kaplan P, Shanske S, De Vivo DC, Bonilla E, Hirano M, DiMauro S, Schon EA (1999) Fatal infantile cardioencephalomyopathy with COX deficiency and mutations in SCO2, a COX assembly gene. Nat Genet 23(3):333–337. https://doi.org/10.1038/15513

    Article  CAS  PubMed  Google Scholar 

  135. Matoba S, Kang JG, Patino WD, Wragg A, Boehm M, Gavrilova O, Hurley PJ, Bunz F, Hwang PM (2006) p53 regulates mitochondrial respiration. Science 312(5780):1650–1653. https://doi.org/10.1126/science.1126863

    Article  CAS  PubMed  Google Scholar 

  136. Xue W, Cai L, Tan Y, Thistlethwaite P, Kang YJ, Li X, Feng W (2010) Cardiac-specific overexpression of HIF-1{alpha} prevents deterioration of glycolytic pathway and cardiac remodeling in streptozotocin-induced diabetic mice. Am J Pathol 177(1):97–105. https://doi.org/10.2353/ajpath.2010.091091

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Schwartz D, Rotter V (1998) p53-dependent cell cycle control: response to genotoxic stress. Semin Cancer Biol 8(5):325–336. https://doi.org/10.1006/scbi.1998.0095

    Article  CAS  PubMed  Google Scholar 

  138. Bohlig L, Rother K (2011) One function–multiple mechanisms: the manifold activities of p53 as a transcriptional repressor. J Biomed Biotechnol 2011:464916. https://doi.org/10.1155/2011/464916

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Mijit M, Caracciolo V, Melillo A, Amicarelli F, Giordano A (2020) Role of p53 in the regulation of cellular senescence. Biomolecules. https://doi.org/10.3390/biom10030420

    Article  PubMed  PubMed Central  Google Scholar 

  140. Engeland K (2018) Cell cycle arrest through indirect transcriptional repression by p53: I have a DREAM. Cell Death Differ 25(1):114–132. https://doi.org/10.1038/cdd.2017.172

    Article  CAS  PubMed  Google Scholar 

  141. Brown MS, Goldstein JL (1983) Lipoprotein metabolism in the macrophage: implications for cholesterol deposition in atherosclerosis. Annu Rev Biochem 52:223–261. https://doi.org/10.1146/annurev.bi.52.070183.001255

    Article  CAS  PubMed  Google Scholar 

  142. Ihling C, Menzel G, Wellens E, Monting JS, Schaefer HE, Zeiher AM (1997) Topographical association between the cyclin-dependent kinases inhibitor P21, p53 accumulation, and cellular proliferation in human atherosclerotic tissue. Arterioscler Thromb Vasc Biol 17(10):2218–2224. https://doi.org/10.1161/01.atv.17.10.2218

    Article  CAS  PubMed  Google Scholar 

  143. Merched AJ, Williams E, Chan L (2003) Macrophage-specific p53 expression plays a crucial role in atherosclerosis development and plaque remodeling. Arterioscler Thromb Vasc Biol 23(9):1608–1614. https://doi.org/10.1161/01.ATV.0000084825.88022.53

    Article  CAS  PubMed  Google Scholar 

  144. Guevara NV, Kim HS, Antonova EI, Chan L (1999) The absence of p53 accelerates atherosclerosis by increasing cell proliferation in vivo. Nat Med 5(3):335–339. https://doi.org/10.1038/6585

    Article  CAS  PubMed  Google Scholar 

  145. Song P, Xie Z, Wu Y, Xu J, Dong Y, Zou MH (2008) Protein kinase Czeta-dependent LKB1 serine 428 phosphorylation increases LKB1 nucleus export and apoptosis in endothelial cells. J Biol Chem 283(18):12446–12455. https://doi.org/10.1074/jbc.M708208200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Sun L, Dou F, Chen J, Chi H, Xing S, Liu T, Sun S, Chen C (2018) Salidroside slows the progression of EA.hy926 cell senescence by regulating the cell cycle in an atherosclerosis model. Mol Med Rep 17(1):257–263. https://doi.org/10.3892/mmr.2017.7872

    Article  CAS  PubMed  Google Scholar 

  147. Minamino T, Miyauchi H, Yoshida T, Ishida Y, Yoshida H, Komuro I (2002) Endothelial cell senescence in human atherosclerosis: role of telomere in endothelial dysfunction. Circulation 105(13):1541–1544. https://doi.org/10.1161/01.cir.0000013836.85741.17

    Article  CAS  PubMed  Google Scholar 

  148. Fedele M, Benvenuto G, Pero R, Majello B, Battista S, Lembo F, Vollono E, Day PM, Santoro M, Lania L, Bruni CB, Fusco A, Chiariotti L (2000) A novel member of the BTB/POZ family, PATZ, associates with the RNF4 RING finger protein and acts as a transcriptional repressor. J Biol Chem 275(11):7894–7901. https://doi.org/10.1074/jbc.275.11.7894

    Article  CAS  PubMed  Google Scholar 

  149. Cho JH, Kim MJ, Kim KJ, Kim JR (2012) POZ/BTB and AT-hook-containing zinc finger protein 1 (PATZ1) inhibits endothelial cell senescence through a p53 dependent pathway. Cell Death Differ 19(4):703–712. https://doi.org/10.1038/cdd.2011.142

    Article  CAS  PubMed  Google Scholar 

  150. Le NT, Sandhu UG, Quintana-Quezada RA, Hoang NM, Fujiwara K, Abe JI (2017) Flow signaling and atherosclerosis. Cell Mol Life Sci 74(10):1835–1858. https://doi.org/10.1007/s00018-016-2442-4

    Article  CAS  PubMed  Google Scholar 

  151. Warboys CM, de Luca A, Amini N, Luong L, Duckles H, Hsiao S, White A, Biswas S, Khamis R, Chong CK, Cheung WM, Sherwin SJ, Bennett MR, Gil J, Mason JC, Haskard DO, Evans PC (2014) Disturbed flow promotes endothelial senescence via a p53-dependent pathway. Arterioscler Thromb Vasc Biol 34(5):985–995. https://doi.org/10.1161/ATVBAHA.114.303415

    Article  CAS  PubMed  Google Scholar 

  152. Takabe W, Alberts-Grill N, Jo H (2011) Disturbed flow: p53 SUMOylation in the turnover of endothelial cells. J Cell Biol 193(5):805–807. https://doi.org/10.1083/jcb.201104140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Lin K, Hsu PP, Chen BP, Yuan S, Usami S, Shyy JY, Li YS, Chien S (2000) Molecular mechanism of endothelial growth arrest by laminar shear stress. Proc Natl Acad Sci U S A 97(17):9385–9389. https://doi.org/10.1073/pnas.170282597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Wang J, Uryga AK, Reinhold J, Figg N, Baker L, Finigan A, Gray K, Kumar S, Clarke M, Bennett M (2015) Vascular smooth muscle cell senescence promotes atherosclerosis and features of plaque vulnerability. Circulation 132(20):1909–1919. https://doi.org/10.1161/CIRCULATIONAHA.115.016457

    Article  CAS  PubMed  Google Scholar 

  155. Fujita K, Horikawa I, Mondal AM, Jenkins LM, Appella E, Vojtesek B, Bourdon JC, Lane DP, Harris CC (2010) Positive feedback between p53 and TRF2 during telomere-damage signalling and cellular senescence. Nat Cell Biol 12(12):1205–1212. https://doi.org/10.1038/ncb2123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Stagno D’Alcontres M, Mendez-Bermudez A, Foxon JL, Royle NJ, Salomoni P (2007) Lack of TRF2 in ALT cells causes PML-dependent p53 activation and loss of telomeric DNA. J Cell Biol 179(5):855–867. https://doi.org/10.1083/jcb.200703020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Burke RM, Lighthouse JK, Quijada P, Dirkx RA Jr, Rosenberg A, Moravec CS, Alexis JD, Small EM (2018) Small proline-rich protein 2B drives stress-dependent p53 degradation and fibroblast proliferation in heart failure. Proc Natl Acad Sci USA 115(15):E3436–E3445. https://doi.org/10.1073/pnas.1717423115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Zhu F, Li Y, Zhang J, Piao C, Liu T, Li HH, Du J (2013) Senescent cardiac fibroblast is critical for cardiac fibrosis after myocardial infarction. PLoS One 8(9):e74535. https://doi.org/10.1371/journal.pone.0074535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Meyer K, Hodwin B, Ramanujam D, Engelhardt S, Sarikas A (2016) Essential role for premature senescence of myofibroblasts in myocardial fibrosis. J Am Coll Cardiol 67(17):2018–2028. https://doi.org/10.1016/j.jacc.2016.02.047

    Article  CAS  PubMed  Google Scholar 

  160. Chen SN, Lombardi R, Karmouch J, Tsai JY, Czernuszewicz G, Taylor MRG, Mestroni L, Coarfa C, Gurha P, Marian AJ (2019) DNA damage response/TP53 pathway is activated and contributes to the pathogenesis of dilated cardiomyopathy associated with LMNA (Lamin A/C) mutations. Circ Res 124(6):856–873. https://doi.org/10.1161/CIRCRESAHA.118.314238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Ubil E, Duan J, Pillai IC, Rosa-Garrido M, Wu Y, Bargiacchi F, Lu Y, Stanbouly S, Huang J, Rojas M, Vondriska TM, Stefani E, Deb A (2014) Mesenchymal-endothelial transition contributes to cardiac neovascularization. Nature 514(7524):585–590. https://doi.org/10.1038/nature13839

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Komarov PG, Komarova EA, Kondratov RV, Christov-Tselkov K, Coon JS, Chernov MV, Gudkov AV (1999) A chemical inhibitor of p53 that protects mice from the side effects of cancer therapy. Science 285(5434):1733–1737. https://doi.org/10.1126/science.285.5434.1733

    Article  CAS  PubMed  Google Scholar 

  163. Gudkov AV, Komarova EA (2010) Pathologies associated with the p53 response. Cold Spring Harb Perspect Biol 2(7):a001180. https://doi.org/10.1101/cshperspect.a001180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Zhu J, Singh M, Selivanova G, Peuget S (2020) Pifithrin-alpha alters p53 post-translational modifications pattern and differentially inhibits p53 target genes. Sci Rep 10(1):1049. https://doi.org/10.1038/s41598-020-58051-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Strom E, Sathe S, Komarov PG, Chernova OB, Pavlovska I, Shyshynova I, Bosykh DA, Burdelya LG, Macklis RM, Skaliter R, Komarova EA, Gudkov AV (2006) Small-molecule inhibitor of p53 binding to mitochondria protects mice from gamma radiation. Nat Chem Biol 2(9):474–479. https://doi.org/10.1038/nchembio809

    Article  CAS  PubMed  Google Scholar 

  166. Liu J, Mao W, Ding B, Liang CS (2008) ERKs/p53 signal transduction pathway is involved in doxorubicin-induced apoptosis in H9c2 cells and cardiomyocytes. Am J Physiol Heart Circ Physiol 295(5):H1956-1965. https://doi.org/10.1152/ajpheart.00407.2008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Sardao VA, Oliveira PJ, Holy J, Oliveira CR, Wallace KB (2009) Doxorubicin-induced mitochondrial dysfunction is secondary to nuclear p53 activation in H9c2 cardiomyoblasts. Cancer Chemother Pharmacol 64(4):811–827. https://doi.org/10.1007/s00280-009-0932-x

    Article  CAS  PubMed  Google Scholar 

  168. Liu P, Xu B, Cavalieri TA, Hock CE (2006) Pifithrin-alpha attenuates p53-mediated apoptosis and improves cardiac function in response to myocardial ischemia/reperfusion in aged rats. Shock 26(6):608–614. https://doi.org/10.1097/01.shk.0000232273.11225.af

    Article  CAS  PubMed  Google Scholar 

  169. Liu P, Xu B, Cavalieri TA, Hock CE (2008) Inhibition of p53 by pifithrin-alpha reduces myocyte apoptosis and leukocyte transmigration in aged rat hearts following 24 hours of reperfusion. Shock 30(5):545–551. https://doi.org/10.1097/SHK.0b013e31816a192d

    Article  CAS  PubMed  Google Scholar 

  170. Mazelin L, Panthu B, Nicot AS, Belotti E, Tintignac L, Teixeira G, Zhang Q, Risson V, Baas D, Delaune E, Derumeaux G, Taillandier D, Ohlmann T, Ovize M, Gangloff YG, Schaeffer L (2016) mTOR inactivation in myocardium from infant mice rapidly leads to dilated cardiomyopathy due to translation defects and p53/JNK-mediated apoptosis. J Mol Cell Cardiol 97:213–225. https://doi.org/10.1016/j.yjmcc.2016.04.011

    Article  CAS  PubMed  Google Scholar 

  171. Wang HJ, Lee EY, Han SJ, Kim SH, Lee BW, Ahn CW, Cha BS, Lee HC (2012) Dual pathways of p53 mediated glucolipotoxicity-induced apoptosis of rat cardiomyoblast cell: activation of p53 proapoptosis and inhibition of Nrf2-NQO1 antiapoptosis. Metabolism 61(4):496–503. https://doi.org/10.1016/j.metabol.2011.09.005

    Article  CAS  PubMed  Google Scholar 

  172. Qi Z, He J, Su Y, He Q, Liu J, Yu L, Al-Attas O, Hussain T, Ding S, Ji L, Qian M (2011) Physical exercise regulates p53 activity targeting SCO2 and increases mitochondrial COX biogenesis in cardiac muscle with age. PLoS One 6(7):e21140. https://doi.org/10.1371/journal.pone.0021140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Zhang Y, Kohler K, Xu J, Lu D, Braun T, Schlitt A, Buerke M, Muller-Werdan U, Werdan K, Ebelt H (2011) Inhibition of p53 after acute myocardial infarction: reduction of apoptosis is counteracted by disturbed scar formation and cardiac rupture. J Mol Cell Cardiol 50(3):471–478. https://doi.org/10.1016/j.yjmcc.2010.11.006

    Article  CAS  PubMed  Google Scholar 

  174. Ali MA, Cho WJ, Hudson B, Kassiri Z, Granzier H, Schulz R (2010) Titin is a target of matrix metalloproteinase-2: implications in myocardial ischemia/reperfusion injury. Circulation 122(20):2039–2047. https://doi.org/10.1161/CIRCULATIONAHA.109.930222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Sawicki G, Leon H, Sawicka J, Sariahmetoglu M, Schulze CJ, Scott PG, Szczesna-Cordary D, Schulz R (2005) Degradation of myosin light chain in isolated rat hearts subjected to ischemia-reperfusion injury: a new intracellular target for matrix metalloproteinase-2. Circulation 112(4):544–552. https://doi.org/10.1161/CIRCULATIONAHA.104.531616

    Article  CAS  PubMed  Google Scholar 

  176. Sung MM, Schulz CG, Wang W, Sawicki G, Bautista-Lopez NL, Schulz R (2007) Matrix metalloproteinase-2 degrades the cytoskeletal protein alpha-actinin in peroxynitrite mediated myocardial injury. J Mol Cell Cardiol 43(4):429–436. https://doi.org/10.1016/j.yjmcc.2007.07.055

    Article  CAS  PubMed  Google Scholar 

  177. Van Eyk JE, Powers F, Law W, Larue C, Hodges RS, Solaro RJ (1998) Breakdown and release of myofilament proteins during ischemia and ischemia/reperfusion in rat hearts: identification of degradation products and effects on the pCa-force relation. Circ Res 82(2):261–271. https://doi.org/10.1161/01.res.82.2.261

    Article  PubMed  Google Scholar 

  178. Wang W, Schulze CJ, Suarez-Pinzon WL, Dyck JR, Sawicki G, Schulz R (2002) Intracellular action of matrix metalloproteinase-2 accounts for acute myocardial ischemia and reperfusion injury. Circulation 106(12):1543–1549. https://doi.org/10.1161/01.cir.0000028818.33488.7b

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are indebted to Editage (www.editage.cn) for the English writing and editing.

Funding

This work was supported in part by the National Key R&D Program of China (2016YFC0900903 to Yang Zheng). All personnel expenses and partial research-related expenses for Hongbo Men, Wenqian Zhou, Xiang Wang, and Shan Huang when they worked in the University of Louisville (11/2018–3/2021) were provided by the First Hospital of Jilin University, Changchun, China under the agreement of U.S-China Pediatric Research Exchange Training Program.

Author information

Authors and Affiliations

Authors

Contributions

HM: Conceptualization and Writing—Original draft preparation. HC, QC, WZ, XW, and SH: Literature searching and summary and Writing—Original draft preparation. YZ: Conceptualization, Reviewing and Editing, and Funding acquisition. LC: Conceptualization, Reviewing, and Editing.

Corresponding authors

Correspondence to Yang Zheng or Lu Cai.

Ethics declarations

Conflict of interest

The author declares no conflict of interest.

Consent for publication

Its publication has been approved by all co-authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Men, H., Cai, H., Cheng, Q. et al. The regulatory roles of p53 in cardiovascular health and disease. Cell. Mol. Life Sci. 78, 2001–2018 (2021). https://doi.org/10.1007/s00018-020-03694-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-020-03694-6

Keywords

Navigation