Skip to main content

Advertisement

Log in

A recent trend: application of graphene in catalysis

  • Review
  • Published:
Carbon Letters Aims and scope Submit manuscript

Abstract

Graphene, an allotrope of carbon in 2D structure, has revolutionised research, development and application in various disciplines since its successful isolation 16 years ago. The single layer of sp2-hybridised carbon atoms brings with it a string of unrivalled characteristics at a fraction of the price of its competitors, including platinum, gold and silver. More recently, there has been a growing trend in the application of graphene in catalysis, either as metal-free catalysts, composite catalysts or as catalyst supports. The unique and extraordinary properties of graphene have rendered it useful in increasing the reactivity and selectivity of some reactions. Owing to its large surface area, outstanding adsorptivity and high compatibility with various functional groups, graphene is able to provide a whole new level of possibilities and flexibilities to design and synthesise fit-for-purpose graphene-based catalysts for specific applications. This review is focussed on the progress, mechanisms and challenges of graphene application in four main reactions, i.e., oxygen reduction reaction, water splitting, water treatment and Fischer–Tropsch synthesis. This review also summarises the advantages and drawbacks of graphene over other commonly used catalysts. Given the inherent nature of graphene, coupled with its recent accelerated advancement in the synthesis and modification processes, it is anticipated that the application of graphene in catalysis will grow exponentially from its current stage of infancy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Huang C, Li C, Shi G (2012) Graphene based catalysts. Energy Environ Sci 5(10):8848–8868

    CAS  Google Scholar 

  2. Zhao H et al (2015) Screening of metal oxides for Hg0capture. Energy Procedia 75:2421–2426

    CAS  Google Scholar 

  3. Julkapli NM, Bagheri S (2015) Graphene supported heterogeneous catalysts: an overview. Int J Hydrogen Energy 40(2):948–979

    CAS  Google Scholar 

  4. Su C, Loh KP (2013) Carbocatalysts: graphene oxide and its derivatives. Acc Chem Res 46(10):2275–2285

    CAS  Google Scholar 

  5. Marras F (2010) Recovery and recycling of homogeneous catalysts: silica as temporary or permanent support, in Faculty of Science (FNWI). University of Amsterdam, p 138

  6. Gomes JF et al (2008) Development of heterogeneous catalysts for transesterification of triglycerides. React Kinet Catal Lett 95(2):273–279

    CAS  Google Scholar 

  7. Lv G et al (2015) Graphene oxide: a convenient metal-free carbocatalyst for facilitating aerobic oxidation of 5-hydroxymethylfurfural into 2, 5-diformylfuran. ACS Catal 5(9):5636–5646

    CAS  Google Scholar 

  8. ASTM Standards C618-89a (1989) ASTM Designation C618-89a. Annual Book of ASTM Standards, p 289

  9. Zhu Y et al (2010) Graphene and graphene oxide: synthesis, properties, and applications. Adv Mater 22(35):3906–3924

    CAS  Google Scholar 

  10. Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6(3):183–191

    CAS  Google Scholar 

  11. Morales Ibarra R et al (2020) Graphene exfoliation with supercritical fluids. Carbon Lett. https://doi.org/10.1007/s42823-020-00153-x

    Article  Google Scholar 

  12. Marinkas A et al (2013) Graphene as catalyst support: the influences of carbon additives and catalyst preparation methods on the performance of PEM fuel cells. Carbon 58:139–150

    CAS  Google Scholar 

  13. Chehroudi B (2016) Applications of graphene in fuel propellant combustion. In: Graphene science handbook, pp 391–398

  14. Fan X (2015) Graphene: a promising two-dimensional support for heterogeneous catalysts. Front Mater 1(39):1–2

    Google Scholar 

  15. Hu L et al (2010) Density functional calculation of transition metal adatom adsorption on graphene. Phys B 405(16):3337–3341

    CAS  Google Scholar 

  16. Nakada K, Ishii A (2011) Migration of adatom adsorption on graphene using DFT calculation. Solid State Commun 151(1):13–16

    CAS  Google Scholar 

  17. Machado BF, Serp P (2012) Graphene-based materials for catalysis. Catal Sci Technol 2(1):54–75

    CAS  Google Scholar 

  18. Tang Y, Yang Z, Dai X (2011) Noble metals induced magnetic properties of graphene. J Magn Magn Mater 323(20):2441–2447

    CAS  Google Scholar 

  19. Yanwu Z et al (2010) Graphene and graphene oxide: synthesis, properties, and applications. Adv Mater 22(35):3906–3924

    Google Scholar 

  20. Woo J-H et al (2019) Effect of polydopamine-modified reduced graphene oxides on the catalytic activity of Pt nanoparticles catalysts for fuel cell electrodes. Carbon Lett 29(1):47–55

    Google Scholar 

  21. Liu J et al (2018) Graphene-based nanomaterials and their potentials in advanced drug delivery and cancer therapy. J Control Release 286:64–73

    CAS  Google Scholar 

  22. Boukhvalov DW, Katsnelson MI (2009) Chemical functionalization of graphene. J Phys Condens Matter 21(34):344205

    CAS  Google Scholar 

  23. Hashimoto A et al (2004) Direct evidence for atomic defects in graphene layers. Nature 430:870

    CAS  Google Scholar 

  24. Fan X, Zhang G, Zhang F (2015) Multiple roles of graphene in heterogeneous catalysis. Chem Soc Rev 44(10):3023–3035

    CAS  Google Scholar 

  25. Shende P, Augustine S, Prabhakar B (2020) A review on graphene nanoribbons for advanced biomedical applications. Carbon Lett 30:465–475

  26. Jeong H-S et al (2020) Oriented wrinkle textures of free-standing graphene nanosheets: application as a high-performance lithium-ion battery anode. Carbon Lett. https://doi.org/10.1007/s42823-020-00163-9

    Article  Google Scholar 

  27. Hu H et al (2015) Metal-free graphene-based catalyst—insight into the catalytic activity: a short review. Appl Catal A 492:1–9

    CAS  Google Scholar 

  28. Zhou X et al (2014) A review of graphene-based nanostructural materials for both catalyst supports and metal-free catalysts in PEM fuel cell oxygen reduction reactions. Adv Energy Mater 4(8):1301523

    Google Scholar 

  29. Song C, Zhang J (2008) Electrocatalytic oxygen reduction reaction. In: Zhang J (ed) PEM fuel cell electrocatalysts and catalyst layers: fundamentals and applications. Springer, London, pp 89–134

    Google Scholar 

  30. Zhang L et al (2006) Progress in preparation of non-noble electrocatalysts for PEM fuel cell reactions. J Power Sour 156(2):171–182

    CAS  Google Scholar 

  31. Gouérec P, Savy M, Riga J (1998) Oxygen reduction in acidic media catalyzed by pyrolyzed cobalt macrocycles dispersed on an active carbon: the importance of the content of oxygen surface groups on the evolution of the chelate structure during the heat treatment. Electrochim Acta 43(7):743–753

    Google Scholar 

  32. Goellner V et al (2015) Degradation by hydrogen peroxide of metal-nitrogen–carbon catalysts for oxygen reduction. J Electrochem Soc 162(6):H403–H414

    CAS  Google Scholar 

  33. Higgins D et al (2016) The application of graphene and its composites in oxygen reduction electrocatalysis: a perspective and review of recent progress. Energy Environ Sci 9(2):357–390

    CAS  Google Scholar 

  34. Rabis A, Rodriguez P, Schmidt TJ (2012) Electrocatalysis for polymer electrolyte fuel cells: recent achievements and future challenges. ACS Catalysis 2(5):864–890

    CAS  Google Scholar 

  35. Shao M-H, Sasaki K, Adzic RR (2006) Pd−Fe nanoparticles as electrocatalysts for oxygen reduction. J Am Chem Soc 128(11):3526–3527

    CAS  Google Scholar 

  36. Carpenter MK et al (2012) Solvothermal synthesis of platinum alloy nanoparticles for oxygen reduction electrocatalysis. J Am Chem Soc 134(20):8535–8542

    CAS  Google Scholar 

  37. 황성주 One-pot synthesis of platinum nanoparticles embedded on reduced graphene oxide for oxygen reduction in methanol fuel cells. 14(7)

  38. He W et al (2012) An efficient reduction route for the production of Pd–Pt nanoparticles anchored on graphene nanosheets for use as durable oxygen reduction electrocatalysts. Carbon 50(1):265–274

    CAS  Google Scholar 

  39. Zeng L et al (2015) Graphene-supported platinum catalyst prepared with ionomer as surfactant for anion exchange membrane fuel cells. J Power Sour 275:506–515

    CAS  Google Scholar 

  40. Hsieh SH et al (2013) Study of Pt catalyst on graphene and its application to fuel cell. Appl Surf Sci 277:223–230

    CAS  Google Scholar 

  41. Li J et al (2016) Synthesis of PtM (M=Co, Ni)/reduced graphene oxide nanocomposites as electrocatalysts for the oxygen reduction reaction. Nanoscale Res Lett 11(1):3

    Google Scholar 

  42. Seger B, Kamat PV (2009) Electrocatalytically active graphene-platinum nanocomposites. Role of 2-D carbon support in PEM fuel cells. J Phys Chem C 113(19):7990–7995

    CAS  Google Scholar 

  43. Deng D et al (2011) Size effect of graphene on electrocatalytic activation of oxygen. Chem Commun 47(36):10016–10018

    CAS  Google Scholar 

  44. Lester E et al (2018) A proposed biomass char classification system. Fuel 232:845–854

    CAS  Google Scholar 

  45. Daley PJ et al (2019) The impact of ash pellet characteristics and pellet processing parameters on ash fusion behaviour. Fuel 251:779–788

    CAS  Google Scholar 

  46. Jiang D-E, Sumpter BG, Dai S (2007) Unique chemical reactivity of a graphene nanoribbon’s zigzag edge. J Chem Phys 126(13):134701

    Google Scholar 

  47. Guo S, Sun S (2012) FePt nanoparticles assembled on graphene as enhanced catalyst for oxygen reduction reaction. J Am Chem Soc 134(5):2492–2495

    CAS  Google Scholar 

  48. Lijun Y et al (2011) Boron-doped carbon nanotubes as metal-free electrocatalysts for the oxygen reduction reaction. Angew Chem Int Ed 50(31):7132–7135

    Google Scholar 

  49. Yang Z et al (2012) Sulfur-doped graphene as an efficient metal-free cathode catalyst for oxygen reduction. ACS Nano 6(1):205–211

    CAS  Google Scholar 

  50. Benson J et al (2014) Tuning the catalytic activity of graphene nanosheets for oxygen reduction reaction via size and thickness reduction. ACS Appl Mater Interfaces 6(22):19726–19736

    CAS  Google Scholar 

  51. Imran Jafri R, Rajalakshmi N, Ramaprabhu S (2010) Nitrogen doped graphene nanoplatelets as catalyst support for oxygen reduction reaction in proton exchange membrane fuel cell. J Mater Chem 20(34):7114–7117

    CAS  Google Scholar 

  52. Bai J et al (2013) Nitrogen-doped graphene as catalysts and catalyst supports for oxygen reduction in both acidic and alkaline solutions. Int J Hydrogen Energy 38(3):1413–1418

    CAS  Google Scholar 

  53. Chenzhen Z et al (2013) Synthesis of phosphorus-doped graphene and its multifunctional applications for oxygen reduction reaction and lithium ion batteries. Adv Mater 25(35):4932–4937

    Google Scholar 

  54. Quílez-Bermejo J, Morallón E, Cazorla-Amorós D (2020) Metal-free heteroatom-doped carbon-based catalysts for ORR: a critical assessment about the role of heteroatoms. Carbon 165:434–454

    Google Scholar 

  55. Jang AR et al (2018) Electrochemical and electrocatalytic reaction characteristics of boron-incorporated graphene via a simple spin-on dopant process. J Mater Chem A 6(17):7351–7356

    CAS  Google Scholar 

  56. Bo X, Guo L (2013) Ordered mesoporous boron-doped carbons as metal-free electrocatalysts for the oxygen reduction reaction in alkaline solution. Phys Chem Chem Phys 15(7):2459–2465

    CAS  Google Scholar 

  57. Zhao Y et al (2013) Can boron and nitrogen codoping improve oxygen reduction reaction activity of carbon nanotubes? J Am Chem Soc 135(4):1201–1204

    CAS  Google Scholar 

  58. Yao Z et al (2013) Two-step boron and nitrogen doping in graphene for enhanced synergistic catalysis. Angew Chem 52(11):3110–3116

    Google Scholar 

  59. Garcia AC, Gasparotto LH, Gomes JF, Tremiliosi-Filho G (2012) Straightforward synthesis of carbon-supported Ag nanoparticles and their application for the oxygen reduction reaction. Electrocatalysis 3(2):147–152

    CAS  Google Scholar 

  60. Soo LT et al (2016) Synthesis of silver/nitrogen-doped reduced graphene oxide through a one-step thermal solid-state reaction for oxygen reduction in an alkaline medium. J Power Sour 324:412–420

    CAS  Google Scholar 

  61. Jiang S, Zhu C, Dong S (2013) Cobalt and nitrogen-cofunctionalized graphene as a durable non-precious metal catalyst with enhanced ORR activity. J Mater Chem A 1(11):3593–3599

    CAS  Google Scholar 

  62. Liang Y et al (2012) Oxygen reduction electrocatalyst based on strongly coupled cobalt oxide nanocrystals and carbon nanotubes. J Am Chem Soc 134(38):15849–15857

    CAS  Google Scholar 

  63. Wu J et al (2012) Manganese oxide–graphene composite as an efficient catalyst for 4-electron reduction of oxygen in alkaline media. Electrochim Acta 75:305–310

    CAS  Google Scholar 

  64. Zhou R, Qiao SZ (2014) Silver/nitrogen-doped graphene interaction and its effect on electrocatalytic oxygen reduction. Chem Mater 26(20):5868–5873

    CAS  Google Scholar 

  65. Lin Z et al (2013) Simple preparation of nanoporous few-layer nitrogen-doped graphene for use as an efficient electrocatalyst for oxygen reduction and oxygen evolution reactions. Carbon 53:130–136

    CAS  Google Scholar 

  66. Sheng Z-H et al (2011) Catalyst-free synthesis of nitrogen-doped graphene via thermal annealing graphite oxide with melamine and its excellent electrocatalysis. ACS Nano 5(6):4350–4358

    CAS  Google Scholar 

  67. Deng D et al (2011) Toward N-doped graphene via solvothermal synthesis. Chem Mater 23(5):1188–1193

    CAS  Google Scholar 

  68. Hu C et al (2018) Functionalization of graphene materials by heteroatom-doping for energy conversion and storage. Prog Nat Sci Mater Int 28(2):121–132

    CAS  Google Scholar 

  69. Jiang L, Cui L, He X (2014) Cobalt-porphyrin noncovalently functionalized graphene as nonprecious-metal electrocatalyst for oxygen reduction reaction in an alkaline medium. J Solid State Electrochem 19(2):497–506

    Google Scholar 

  70. Shaojun G et al (2012) Co/CoO nanoparticles assembled on graphene for electrochemical reduction of oxygen. Angew Chem Int Ed 51(47):11770–11773

    Google Scholar 

  71. Liang Y et al (2012) Covalent hybrid of spinel manganese-cobalt oxide and graphene as advanced oxygen reduction electrocatalysts. J Am Chem Soc 134(7):3517–3523

    CAS  Google Scholar 

  72. Sibul R et al (2020) Iron- and nitrogen-doped graphene-based catalysts for fuel cell application. ChemElectroChem 7:1739–1747

    CAS  Google Scholar 

  73. Sun M et al (2015) Graphene-based transition metal oxide nanocomposites for the oxygen reduction reaction. Nanoscale 7(4):1250–1269

    CAS  Google Scholar 

  74. Turner JA (1999) A realizable renewable energy future. Science 285(5428):687–689

    CAS  Google Scholar 

  75. World Commission on, E. and Development (1987) Our common future. Oxford University Press, Oxford

    Google Scholar 

  76. Zhu J, Zäch M (2009) Nanostructured materials for photocatalytic hydrogen production. Curr Opin Colloid Interface Sci 14:260–269

    CAS  Google Scholar 

  77. Liu G et al (2012) Engineering TiO2 nanomaterials for CO2 conversion/solar fuels. Sol Energy Mater Sol Cells 105:53–68

    CAS  Google Scholar 

  78. Suk Jang J, Gyu Kim H, Lee JS (2012) Heterojunction semiconductors: a strategy to develop efficient photocatalytic materials for visible light water splitting. Catal Today 185:270–277

    Google Scholar 

  79. Quanhua X et al (2012) A novel photocatalyst LaOF: facile fabrication and photocatalytic hydrogen production. Catal Commun 27:21–25

    Google Scholar 

  80. Ahmad H et al (2015) Hydrogen from photo-catalytic water splitting process: a review. Renew Sustain Energy Rev 43:599–610

    CAS  Google Scholar 

  81. Jiang D et al (2001) Photoelectrochemical behaviour of methanol oxidation at nanoporous TiO2 film electrodes. J Photochem Photobiol A 144(2):197–204

    CAS  Google Scholar 

  82. Lee JS (2006) Photocatalytic water splitting under visible light with particulate semiconductor catalysts. Catal Surv Asia 9(4):217–227

    Google Scholar 

  83. Wang X et al (2008) A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat Mater 8:76

    Google Scholar 

  84. Liu G et al (2010) Unique electronic structure induced high photoreactivity of sulfur-doped graphitic C3N4. J Am Chem Soc 132(33):11642–11648

    CAS  Google Scholar 

  85. Wu N et al (2010) Shape-enhanced photocatalytic activity of single-crystalline anatase TiO2 (101) nanobelts. J Am Chem Soc 132(19):6679–6685

    CAS  Google Scholar 

  86. Yu J et al (2009) Enhancement of photocatalytic activity of mesporous TiO2 powders by hydrothermal surface fluorination treatment. J Phys Chem C 113(16):6743–6750

    CAS  Google Scholar 

  87. Joung D et al (2010) Space charge limited conduction with exponential trap distribution in reduced graphene oxide sheets. Appl Phys Lett 97(9):093105

    Google Scholar 

  88. Jiang X et al (2013) Graphene oxide as a chemically tunable 2-D material for visible-light photocatalyst applications. J Catal 299:204–209

    CAS  Google Scholar 

  89. Yeh T-F et al (2011) Graphite oxide with different oxygenated levels for hydrogen and oxygen production from water under illumination: the band positions of graphite oxide. J Phys Chem C 115(45):22587–22597

    CAS  Google Scholar 

  90. Loh K et al (2010) Graphene oxide as a chemically tunable platform for optical applications. Nat Chem 2:1015–1024

    CAS  Google Scholar 

  91. Krishnamoorthy K, Mohan R, Kim S-J (2011) Graphene oxide as a photocatalytic material. Appl Phys Lett 98(24):244101

    Google Scholar 

  92. Liu P et al (2012) Hybrid density functional study on SrTiO3 for visible light photocatalysis. Int J Hydrogen Energy 37(16):11611–11617

    CAS  Google Scholar 

  93. Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238(5358):37–38

    CAS  Google Scholar 

  94. Khalid NR, Ahmed E, Hong Z, Zhang Y, Ullah M, Ahmed M (2013) Graphene modified Nd/TiO2 photocatalyst for methyl orange degradation under visible light irradiation. Ceram Int 39(4):3569–3575

    CAS  Google Scholar 

  95. Xu Y, Gao S-P (2012) Band gap of C3N4 in the GW approximation. Int J Hydrogen Energy 37:11072–11080

    CAS  Google Scholar 

  96. Zhang H et al (2010) P25-graphene composite as a high performance photocatalyst. ACS Nano 4(1):380–386

    CAS  Google Scholar 

  97. Zhang Y et al (2010) Cytotoxicity effects of graphene and single-wall carbon nanotubes in neural phaeochromocytoma-derived PC12 Cells. ACS Nano 4(6):3181–3186

    CAS  Google Scholar 

  98. Sher Shah MSA et al (2012) Green synthesis of biphasic TiO2–reduced graphene oxide nanocomposites with highly enhanced photocatalytic activity. ACS Appl Mater Interfaces 4(8):3893–3901

    CAS  Google Scholar 

  99. Kudo A, Miseki Y (2009) Heterogeneous photocatalyst materials for water splitting. Chem Soc Rev 38(1):253–278

    CAS  Google Scholar 

  100. Joy J, Mathew J, George SC (2018) Nanomaterials for photoelectrochemical water splitting—review. Int J Hydrogen Energy 43(10):4804–4817

    CAS  Google Scholar 

  101. Khan I et al (2017) Sonochemical assisted synthesis of RGO/ZnO nanowire arrays for photoelectrochemical water splitting. Ultrason Sonochem 37:669–675

    CAS  Google Scholar 

  102. Yusoff N et al (2015) Core-shell Fe3O4-ZnO nanoparticles decorated on reduced graphene oxide for enhanced photoelectrochemical water splitting. Ceram Int 41(3):5117–5128

    CAS  Google Scholar 

  103. Li Q et al (2011) Highly efficient visible-light-driven photocatalytic hydrogen production of CdS-cluster-decorated graphene nanosheets. J Am Chem Soc 133(28):10878–10884

    CAS  Google Scholar 

  104. Ng YH et al (2010) Reducing graphene oxide on a visible-light BiVO4 photocatalyst for an enhanced photoelectrochemical water splitting. J Phys Chem Lett 1(17):2607–2612

    CAS  Google Scholar 

  105. Iwase A et al (2011) Reduced graphene oxide as a solid-state electron mediator in Z-scheme photocatalytic water splitting under visible light. J Am Chem Soc 133(29):11054–11057

    CAS  Google Scholar 

  106. Neppolian B et al (2012) Graphene oxide based Pt–TiO2 photocatalyst: ultrasound assisted synthesis, characterization and catalytic efficiency. Ultrason Sonochem 19(1):9–15

    CAS  Google Scholar 

  107. Thakur K, Kandasubramanian B (2019) Graphene and Graphene oxide-based composites for removal of organic pollutants: a review. J Chem Eng Data 64(3):833–867

    CAS  Google Scholar 

  108. Giri AS, Golder AK (2014) Fenton, photo-Fenton, H2O2 photolysis, and TiO2 photocatalysis for dipyrone oxidation: drug removal, mineralization, biodegradability, and degradation mechanism. Ind Eng Chem Res 53(4):1351–1358

    CAS  Google Scholar 

  109. Zhao H et al (2016) Hg0-temperature-programmed surface reaction and its application on the investigation of metal oxides for Hg0 capture. Fuel 181:1089–1094

    CAS  Google Scholar 

  110. Zhao D et al (2012) Enhanced photocatalytic degradation of methylene blue under visible irradiation on graphene@TiO2 dyade structure. Appl Catal B 111–112:303–308

    Google Scholar 

  111. Yang X et al (2015) Fabrication of P25/Ag3PO4/graphene oxide heterostructures for enhanced solar photocatalytic degradation of organic pollutants and bacteria. Appl Catal B 166–167:231–240

    Google Scholar 

  112. Han S et al (2014) One-step hydrothermal synthesis of 2D hexagonal nanoplates of α-Fe2O3/graphene composites with enhanced photocatalytic activity. Adv Func Mater 24(36):5719–5727

    CAS  Google Scholar 

  113. Guo S et al (2013) Graphene oxide–Fe2O3 hybrid material as highly efficient heterogeneous catalyst for degradation of organic contaminants. Carbon 60:437–444

    CAS  Google Scholar 

  114. Liu Y et al (2017) Enhanced catalytic degradation of methylene blue by α-Fe2O3/graphene oxide via heterogeneous photo-Fenton reactions. Appl Catal B 206:642–652

    CAS  Google Scholar 

  115. Guo S et al (2017) Graphene modified iron sludge derived from homogeneous Fenton process as an efficient heterogeneous Fenton catalyst for degradation of organic pollutants. Microporous Mesoporous Mater 238:62–68

    CAS  Google Scholar 

  116. Arshad A et al (2018) Graphene/Fe3O4 nanocomposite: Interplay between photo-Fenton type reaction, and carbon purity for the removal of methyl orange. Ceram Int 44(3):2643–2648

    CAS  Google Scholar 

  117. Liu Y et al (2017) Aligned α-FeOOH nanorods anchored on a graphene oxide-carbon nanotubes aerogel can serve as an effective Fenton-like oxidation catalyst. Appl Catal B 213:74–86

    CAS  Google Scholar 

  118. Dong C et al (2018) Developing stretchable and graphene-oxide-based hydrogel for the removal of organic pollutants and metal ions. Appl Catal B 222:146–156

    CAS  Google Scholar 

  119. Bhatkhande DS, Pangarkar VG, Beenackers AACM (2002) Photocatalytic degradation for environmental applications—a review. J Chem Technol Biotechnol 77(1):102–116

    CAS  Google Scholar 

  120. Tsutsumi O (2005) Assessment of human contamination of estrogenic endocrine-disrupting chemicals and their risk for human reproduction. J Steroid Biochem Mol Biol 93(2):325–330

    CAS  Google Scholar 

  121. Feldman MD (1997) Editorial: estrogens from plastic—are we being exposed? Endocrinology 138(5):1777–1779

    CAS  Google Scholar 

  122. Mamoru N, Hisanori K, Hidehiko S (1999) HPLC analysis of dental resin composites components. J Biomed Mater Res 47(3):374–378

    Google Scholar 

  123. Jafari A, Abasabad R, Salehzadeh A (2009) Endocerine disrupting contaminants in water resources and sewage in Hamadan City of Iran. J Environ Health Sci Eng 6(2):89–96

    CAS  Google Scholar 

  124. Vandenberg LN et al (2007) Human exposure to bisphenol A (BPA). Reprod Toxicol 24(2):139–177

    CAS  Google Scholar 

  125. Kuramitz H et al (2001) Electrochemical oxidation of bisphenol A. Application to the removal of bisphenol A using a carbon fiber electrode. Chemosphere 45(1):37–43

    CAS  Google Scholar 

  126. Orimolade BO, Adekola FA, Adebayo GB (2018) Adsorptive removal of bisphenol A using synthesized magnetite nanoparticles. Appl Water Sci 8(1):46

    Google Scholar 

  127. Sun H et al (2012) Reduced graphene oxide for catalytic oxidation of aqueous organic pollutants. ACS Appl Mater Interfaces 4(10):5466–5471

    CAS  Google Scholar 

  128. Liang C, Wang Z-S, Bruell CJ (2007) Influence of pH on persulfate oxidation of TCE at ambient temperatures. Chemosphere 66(1):106–113

    CAS  Google Scholar 

  129. Du J et al (2016) Efficient activation of peroxymonosulfate by magnetic Mn-MGO for degradation of bisphenol A. J Hazard Mater 320:150–159

    CAS  Google Scholar 

  130. Yao Y et al (2013) Facile synthesis of Mn3O4–reduced graphene oxide hybrids for catalytic decomposition of aqueous organics. Ind Eng Chem Res 52(10):3637–3645

    CAS  Google Scholar 

  131. Dewei W et al (2012) Facile synthesis of porous Mn3O4 nano­crystal–graphene nanocomposites for electrochemical supercapacitors. Eur J Inorg Chem 2012(4):628–635

    Google Scholar 

  132. Krishna R, Sie ST (2000) Design and scale-up of the Fischer–Tropsch bubble column slurry reactor. Fuel Process Technol 64:73–105

    CAS  Google Scholar 

  133. Davis BH (2005) Fischer–Tropsch synthesis: overview of reactor development and future potentialities. Top Catal 32(3/4):143–168

    CAS  Google Scholar 

  134. De Deugd RM (2004) Fischer–Tropsch synthesis revisited; efficiency and selectivity benefits from imposing temporal and/or spatial structure in the reactor, in DelftChemTech

  135. Loosdrecht J, Botes FG, Ciobica IM, Ferreira AC, Gibson P, Moodley DJ, Saib AM, Visagie JL, Weststrate CJ, Niemantsverdriet JW (2013) Fischer–Tropsch synthesis: catalysts and chemistry. Surf Inorg Chem Heterog Catal 7(20):6200

    Google Scholar 

  136. Jahangiri H et al (2014) A review of advanced catalyst development for Fischer–Tropsch synthesis of hydrocarbons from biomass derived syn-gas. Catal Sci Technol 4(8):2210–2229

    CAS  Google Scholar 

  137. Mahmoudi H et al (2017) A review of Fischer Tropsch synthesis process, mechanism, surface chemistry and catalyst formulation. Biofuels Eng 2(1):11–31

    Google Scholar 

  138. Pang CH, Lester E, Wu T (2018) Influence of lignocellulose and plant cell walls on biomass char morphology and combustion reactivity. Biomass Bioenergy 119:480–491

    CAS  Google Scholar 

  139. Yan J et al (2016) Influence of minerals on the thermal processing of bamboo with a suite of carbonaceous materials. Fuel 180:256–262

    CAS  Google Scholar 

  140. Schulz H (1999) Short history and present trends of Fischer–Tropsch synthesis. Appl Catal A 186(1):3–12

    CAS  Google Scholar 

  141. Qinghong Z, Jincan K, Ye W (2010) Development of novel catalysts for Fischer–Tropsch synthesis: tuning the product selectivity. ChemCatChem 2(9):1030–1058

    Google Scholar 

  142. Davis BH (2007) Fischer−Tropsch synthesis: comparison of performances of iron and cobalt catalysts. Ind Eng Chem Res 46(26):8938–8945

    CAS  Google Scholar 

  143. Torres Galvis HM et al (2012) Supported iron nanoparticles as catalysts for sustainable production of lower olefins. Science 335(6070):835

    CAS  Google Scholar 

  144. Parvez AM et al (2016) Effect of the addition of different waste carbonaceous materials on coal gasification in CO2 atmosphere. Fuel Process Technol 149:231–238

    CAS  Google Scholar 

  145. Moussa SO et al (2014) Graphene-supported, iron-based nanoparticles for catalytic production of liquid hydrocarbons from synthesis gas: the role of the graphene support in comparison with carbon nanotubes. ACS Catal 4(2):535–545

    CAS  Google Scholar 

  146. Wei Y et al (2018) Enhanced Fischer–Tropsch performances of graphene oxide-supported iron catalysts via argon pretreatment. Catal Sci Technol 8(4):1113–1125

    CAS  Google Scholar 

  147. Zhao H et al (2020) MoO3-adjusted δ-MnO2 nanosheet for catalytic oxidation of Hg0 to Hg2+. Appl Catal B 263:117829

    CAS  Google Scholar 

  148. Zhao HB et al (2013) Iron oxide nanoparticles supported on pyrolytic graphene oxide as model catalysts for Fischer Tropsch synthesis. Appl Catal A 456:233–239

    CAS  Google Scholar 

  149. Chen Q et al (2018) Design of ultra-active iron-based Fischer–Tropsch synthesis catalysts over spherical mesoporous carbon with developed porosity. Chem Eng J 334:714–724

    CAS  Google Scholar 

  150. Nasser ALH et al (2018) Mn–Fe nanoparticles on a reduced graphene oxide catalyst for enhanced olefin production from syngas in a slurry reactor. RSC Adv 8(27):14854–14863

    CAS  Google Scholar 

  151. Dad M et al (2017) SiO2-supported Fe & FeMn colloids—Fischer–Tropsch synthesis on 3D model catalysts. Appl Catal A 537:83–92

    CAS  Google Scholar 

  152. Herranz T et al (2006) Synthesis, structural features, and reactivity of Fe−Mn mixed oxides prepared by microemulsion. Chem Mater 18(9):2364–2375

    CAS  Google Scholar 

  153. Lohitharn N, Goodwin JG, Lotero E (2008) Fe-based Fischer–Tropsch synthesis catalysts containing carbide-forming transition metal promoters. J Catal 255(1):104–113

    CAS  Google Scholar 

  154. Cheng Y et al (2016) Fischer–Tropsch synthesis to lower olefins over potassium-promoted reduced graphene oxide supported iron catalysts. ACS Catal 6(1):389–399

    CAS  Google Scholar 

  155. Hassan HMA et al (2009) Microwave synthesis of graphene sheets supporting metal nanocrystals in aqueous and organic media. J Mater Chem 19(23):3832–3837

    CAS  Google Scholar 

  156. Karimi S et al (2015) Cobalt supported on Graphene—a promising novel Fischer–Tropsch synthesis catalyst. Appl Catal A 499:188–196

    CAS  Google Scholar 

  157. Karimi S et al (2015) Enhancement of cobalt catalyst stability in Fischer–Tropsch synthesis using graphene nanosheets as catalyst support. Chem Eng Res Des 104:713–722

    CAS  Google Scholar 

  158. Taghavi S, Asghari A, Tavasoli A (2017) Enhancement of performance and stability of Graphene nano sheets supported cobalt catalyst in Fischer–Tropsch synthesis using graphene functionalization. Chem Eng Res Des 119:198–208

    CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully express gratitude to all parties who have contributed towards the success of this project, both financially and technically, especially the S&T Innovation 2025 Major Special Programme (Grant number 2018B10022) and the Ningbo Natural Science Foundation Programme (Grant number 2018A610069) funded by the Ningbo Science and Technology Bureau, China, as well as the UNNC FoSE Faculty Inspiration Grant, China (PCH2020). The Zhejiang Provincial Department of Science and Technology is also acknowledged for this research under its Provincial Key Laboratory Programme (2020E10018).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheng Heng Pang.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, Y., Shin, W.I., Chen, H. et al. A recent trend: application of graphene in catalysis. Carbon Lett. 31, 177–199 (2021). https://doi.org/10.1007/s42823-020-00200-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42823-020-00200-7

Keywords

Navigation