Skip to main content
Log in

Numerical investigation of water droplet behavior in anode channel of a PEM fuel cell with partial blockage

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

In this paper, water droplet behavior and its removal process in the anode gas flow channel (GFC) of a proton exchange membrane fuel cell (PEMFC) with partial blockage are numerically investigated using a three-dimensional volume of fluid model. The governing equations are solved using the finite volume method. The effects of the droplet emergence location (\(\alpha )\), blockage ratio (\(\beta )\), longitudinal ratio (\(\gamma )\), contact angle (\(\theta )\) and current density on the water management characteristics, such as droplet shape, removal time, instantaneous and time-averaged pressure drop and water coverage ratio (WCR), are studied. Researchers have already considered the blocking effect on the PEMFC performance without considering the water droplet movement, but the results of the present study show that blocking the GFC has a significant influence on the behavior of water droplet and water management characteristics. As a result, in some cases, pressure drop fluctuation is increased up to 140% in the anode channel. It is also found that by decreasing \(\alpha \) and increasing \(\beta \) and \(\gamma \) individually, the removal time was decreased and the pressure drop increased. Furthermore, our results showed that blockage in the anode channel has a little effect on WCR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Abbreviations

F :

Volume of fluid

\(F_{v}^{\mathrm{st}}\) :

Surface tension force per unit volume (N/m\(^{\mathrm {3}})\)

H :

Channel height (mm)

h :

Block height (mm)

I :

Unit tensor

L :

Channel length (mm)

l :

Block length (mm)

\(l'\) :

Distance of droplet center from the channel inlet (mm)

N :

Unit vector

\(n_{w}\) :

Normal vector on the wall

p :

Pressure (Pa)

\(p_{\mathrm{in}}\) :

Inlet total pressure (Pa)

\(p_{\mathrm{out}}\) :

Outlet total pressure (Pa)

R :

Droplet radius (\(\mu \)m)

t :

Time (msec)

\(t_{w}\) :

Tangent vector on the wall

T :

Capillary tensor (N/m\(^{\mathrm {2}})\)

u :

Velocity vector (m/s)

:

Volume (m\(^{\mathrm {3}})\)

\(x, y\) :

Cartesian coordinates (m)

X\(_{\mathrm {C}}\) :

Horizontal position of droplet mass center (mm)

\(\alpha \) :

Droplet emergence location

\(\beta \) :

Blockage ratio

\(\mathrm {\delta }\) :

Ratio of droplet diameter to channel width

\(\gamma \) :

Longitudinal ratio

\(\theta _{d}\) :

Contact angle (degree)

\(\rho \) :

Mixture density (kg/m\(^{\mathrm {3}})\)

\(\mu \) :

Mixture dynamic viscosity (kg/m.s)

\(\Sigma \) :

Surface tension coefficient (N/m)

\(\Delta p\) :

Pressure drop (Pa)

References

  1. Subramaniam, S., Rajaram, G., Palaniswamy, K., Jothi, V.R.: Comparison of perforated and serpentine flow fields on the performance of proton exchange membrane fuel cell. J. Energy Inst. 90(3), 363–371 (2017). https://doi.org/10.1016/j.joei.2016.04.006

    Article  Google Scholar 

  2. Hu, G., Fan, J., Zheng, Y.: CFD based two-phase modelling of proton exchange membrane fuel cell with interdigitated flow field. J. Energy Inst. 83(2), 93–100 (2010). https://doi.org/10.1179/014426010X12682307291425

    Article  Google Scholar 

  3. Hu, G., Li, G., Zheng, Y., Zhang, Z., Xu, Y.: Optimization and parametric analysis of PEMFC based on an agglomerate model for catalyst layer. J. Energy Inst. 87(2), 163–174 (2014). https://doi.org/10.1016/j.joei.2014.03.004

    Article  Google Scholar 

  4. Ferreira, R.B., Falcão, D., Oliveira, V., Pinto, A.: Numerical simulations of two-phase flow in proton exchange membrane fuel cells using the volume of fluid method—A review. J. Power Sources 277, 329–342 (2015). https://doi.org/10.1016/j.jpowsour.2014.11.124

    Article  Google Scholar 

  5. Mohammadzadeh, K., Khaleghi, H., Abolfazli, H., Seddiq, M.: Effects of gas cross-over through the membrane on water management in the cathode and anode sides of PEM fuel cell. J. Appl. Fluid Mech. (2018). https://doi.org/10.18869/acadpub.jafm.73.247.28559

    Article  Google Scholar 

  6. Mohammadzadeh, K., Kaldehi, B.J., Jazmi, R., Khaleghi, H., Maddahian, R., Shirani, E.: A numerical model for estimation of water droplet size in the anode channel of a proton exchange membrane fuel cell. J. Energy Storage 26, 101021 (2019). https://doi.org/10.1016/j.est.2019.101021

    Article  Google Scholar 

  7. Manso, A., Marzo, F., Barranco, J., Garikano, X., Mujika, M.G.: Influence of geometric parameters of the flow fields on the performance of a PEM fuel cell. A review. Int. J. Hydrog. Energy 37(20), 15256–15287 (2012). https://doi.org/10.1016/j.ijhydene.2012.07.076

    Article  Google Scholar 

  8. Heidary, H., Kermani, M.J., Dabir, B.: Influences of bipolar plate channel blockages on PEM fuel cell performances. Energy Convers. Manag. 124, 51–60 (2016). https://doi.org/10.1016/j.enconman.2016.06.043

    Article  Google Scholar 

  9. Perng, S.-W., Wu, H.-W., Jue, T.-C., Cheng, K.-C.: Numerical predictions of a PEM fuel cell performance enhancement by a rectangular cylinder installed transversely in the flow channel. Appl. Energy 86(9), 1541–1554 (2009). https://doi.org/10.1016/j.apenergy.2008.11.011

    Article  Google Scholar 

  10. Heidary, H., Kermani, M.: Performance enhancement of fuel cells using bipolar plate duct indentations. Int. J. Hydrog. Energy 38(13), 5485–5496 (2013). https://doi.org/10.1016/j.ijhydene.2012.10.020

    Article  Google Scholar 

  11. Afshari, E., Houreh, N.B.: Numerical predictions of performance of the proton exchange membrane fuel cell with baffle (s)-blocked flow field designs. Int. J. Modern Phys. B 28(16), 1450097 (2014). https://doi.org/10.1142/S0217979214500970

    Article  Google Scholar 

  12. Heidary, H., Kermani, M.J., Advani, S.G., Prasad, A.K.: Experimental investigation of in-line and staggered blockages in parallel flowfield channels of PEM fuel cells. Int. J. Hydrog. Energy 41(16), 6885–6893 (2016). https://doi.org/10.1016/j.ijhydene.2016.03.028

    Article  Google Scholar 

  13. Heidary, H., Kermani, M.J., Prasad, A.K., Advani, S.G., Dabir, B.: Numerical modelling of in-line and staggered blockages in parallel flowfield channels of PEM fuel cells. Int. J. Hydrog. Energy 42(4), 2265–2277 (2017). https://doi.org/10.1016/j.ijhydene.2016.10.076

    Article  Google Scholar 

  14. Zhang, G., Fan, L., Sun, J., Jiao, K.: A 3D model of PEMFC considering detailed multiphase flow and anisotropic transport properties. Int. J. Heat Mass Transf. 115, 714–724 (2017). https://doi.org/10.1016/j.ijheatmasstransfer.2017.07.102

    Article  Google Scholar 

  15. Guo, H., Chen, H., Ye, F., Ma, C.F.: Baffle shape effects on mass transfer and power loss of proton exchange membrane fuel cells with different baffled flow channels. Int. J. Energy Res. 43(7), 2737–2755 (2019). https://doi.org/10.1002/er.4328

    Article  Google Scholar 

  16. Chen, H., Guo, H., Ye, F., Ma, C.F.: Modification of the two-fluid model and experimental study of proton exchange membrane fuel cells with baffled flow channels. Energy Convers. Manag. 195, 972–988 (2019). https://doi.org/10.1016/j.enconman.2019.05.071

    Article  Google Scholar 

  17. Ebrahimzadeh, A., Khazaee, I., Fasihfar, A.: Experimental and numerical investigation of obstacle effect on the performance of PEM fuel cell. Int. J. Heat Mass Transf. 141, 891–904 (2019). https://doi.org/10.1016/j.ijheatmasstransfer.2019.07.034

    Article  Google Scholar 

  18. Ferreira, R.B., Falcão, D., Oliveira, V., Pinto, A.: Numerical simulations of two-phase flow in an anode gas channel of a proton exchange membrane fuel cell. Energy 82, 619–628 (2015). https://doi.org/10.1016/j.energy.2015.01.071

    Article  Google Scholar 

  19. Hou, Y., Zhang, G., Qin, Y., Du, Q., Jiao, K.: Numerical simulation of gas liquid two-phase flow in anode channel of low-temperature fuel cells. Int. J. Hydrog. Energy 42(5), 3250–3258 (2017). https://doi.org/10.1016/j.ijhydene.2016.09.219

    Article  Google Scholar 

  20. Chen, Z., Ingham, D., Ismail, M., Ma, L., Hughes, K., Pourkashanian, M.: Dynamics of liquid water in the anode flow channels of PEM fuel cells: a numerical parametric study. J. Energy Inst. 92(6), 1956–1967 (2019). https://doi.org/10.1016/j.joei.2018.10.016

    Article  Google Scholar 

  21. Mohammadzadeh, K., Khaleghi, H., Maddahian, R., Shirani, E.: Numerical investigation of anode channel clogging of a PEMFC with a realistic droplet size distribution. J. Braz. Soc. Mech. Sci. Eng. (2020). https://doi.org/10.1007/s40430-020-02283-9

    Article  Google Scholar 

  22. Ge, S., Wang, C.-Y.: Liquid water formation and transport in the PEFC anode. J. Electrochem. Soc. 154(10), B998–B1005 (2007). https://doi.org/10.1149/1.2761830

    Article  Google Scholar 

  23. Xing, L., Liu, X., Alaje, T., Kumar, R., Mamlouk, M., Scott, K.: A two-phase flow and non-isothermal agglomerate model for a proton exchange membrane (PEM) fuel cell. Energy 73, 618–634 (2014). https://doi.org/10.1016/j.energy.2014.06.065

    Article  Google Scholar 

  24. Xing, L., Mamlouk, M., Scott, K.: A two dimensional agglomerate model for a proton exchange membrane fuel cell. Energy 61, 196–210 (2013). https://doi.org/10.1016/j.energy.2013.08.026

    Article  Google Scholar 

  25. Golpaygan, A., Ashgriz, N.: Multiphase flow model to study channel flow dynamics of PEM fuel cells: deformation and detachment of water droplets. Int. J. Comput. Fluid Dyn. 22(1–2), 85–95 (2008). https://doi.org/10.1080/10618560701733707

    Article  MATH  Google Scholar 

  26. Youngs, DL.: Time-dependent multi-material flow with large fluid distortion. Numer. Methods Fluid Dyn. (1982)

  27. Shirani, E., Ashgriz, N., Mostaghimi, J.: Interface pressure calculation based on conservation of momentum for front capturing methods. J. Comput. Phys. 203(1), 154–175 (2005). https://doi.org/10.1016/j.jcp.2004.08.017

    Article  MATH  Google Scholar 

  28. Lafaurie, B., Nardone, C., Scardovelli, R., Zaleski, S., Zanetti, G.: Modelling merging and fragmentation in multiphase flows with SURFER. J. Comput. Phys. 113(1), 134–147 (1994). https://doi.org/10.1006/jcph.1994.1123

    Article  MathSciNet  MATH  Google Scholar 

  29. Seddiq, M., Khaleghi, H., Mirzaei, M.: Numerical analysis of gas cross-over through the membrane in a proton exchange membrane fuel cell. J. Power Sources 161(1), 371–379 (2006). https://doi.org/10.1016/j.jpowsour.2006.04.074

    Article  Google Scholar 

  30. Seddiq, M., Khaleghi, H., Mirzaei, M.: Parametric study of operation and performance of a PEM fuel cell using numerical method. Iran J. Chem. Chem. Eng. 27(2), 1–12 (2008)

    Google Scholar 

  31. Aslam, R., Ingham, D., Ismail, M., Hughes, K., Ma, L., Pourkashanian, M.: Simultaneous direct visualisation of liquid water in the cathode and anode serpentine flow channels of proton exchange membrane (PEM) fuel cells. J. Energy Inst. 91(6), 1057–1070 (2018). https://doi.org/10.1016/j.joei.2017.07.003

    Article  Google Scholar 

  32. Aslam, R., Ingham, D., Ismail, M., Hughes, K., Ma, L., Pourkashanian, M.: Simultaneous thermal and visual imaging of liquid water of the PEM fuel cell flow channels. J. Energy Inst. 92(2), 311–318 (2019). https://doi.org/10.1016/j.joei.2018.01.005

    Article  Google Scholar 

  33. Siefert, N.S., Litster, S.: Voltage loss and fluctuation in proton exchange membrane fuel cells: The role of cathode channel plurality and air stoichiometric ratio. J. Power Sources 196(4), 1948–1954 (2011). https://doi.org/10.1016/j.jpowsour.2010.10.026

    Article  Google Scholar 

  34. Lu, Z., Kandlikar, S., Rath, C., Grimm, M., Domigan, W., White, A., Hardbarger, M., Owejan, J., Trabold, T.: Water management studies in PEM fuel cells, Part II: ex situ investigation of flow maldistribution, pressure drop and two-phase flow pattern in gas channels. Int. J. Hydrog. Energy 34(8), 3445–3456 (2009). https://doi.org/10.1016/j.ijhydene.2008.12.025

    Article  Google Scholar 

  35. Oliver, D., Chung, J.: Steady flows inside and around a fluid sphere at low Reynolds numbers. Journal of Fluid Mechanics 154, 215–230 (1985). https://doi.org/10.1017/S0022112085001495

    Article  MATH  Google Scholar 

Download references

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hassan Khaleghi.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jazmi, R., Mohammadzadeh, K., Khaleghi, H. et al. Numerical investigation of water droplet behavior in anode channel of a PEM fuel cell with partial blockage. Arch Appl Mech 91, 1391–1406 (2021). https://doi.org/10.1007/s00419-020-01828-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-020-01828-7

Keywords

Navigation