Skip to main content

Advertisement

Log in

An Experimental Investigation of Surface Characterization for Zirconia Ceramic Using Electrochemical Discharge Machining Process

  • Research Article-Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

The industrial acceptance of ceramic materials is gradually increasing because of their attractive properties such as high strength, hot hardness, biocompatibility, insulating, and chemical stability over monolithic materials. The Zirconia (ZrO2) is a ceramic material of nonconductive and brittle in nature; thereby, it is very difficult to machine by very popular well-known machining methods like ECM, WEDM, EDM, etc. The machining problem resists its industrial applications. To overcome this problem, electrochemical discharge machining (ECDM) is a combination of electrochemical and electrical discharge machining methods used to machine the nonconductive ZrO2 material. The effects of machining parameters on machining responses were analysed through different graphs. Taguchi method-based L16 (45) orthogonal array was employed and utilized the acquired results to optimize the machining parameters. The experimental results reveal that the DC supply voltage and electrolyte concentration are the main governing factors in controlling the machining performance. The better material removal rate was identified at 65 V, 16 g/l electrolyte concentration, and 60-mm inter-electrode gap. FESEM images identified some of the micro-cracks on the machined hole surface when machining operations were carried out at a higher level of parameter setting. The presence of iron (Fe) was identified from EDS analysis, and it may be due to the diffused part of the steel cathode adhering to the machined surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

AC:

Alternative current

Adj MS:

Adjusted mean square

Adj SS:

Adjusted sum of square

ANOVA:

Analysis of variance

DC:

Direct current

DF :

Duty factor

DOF:

Degrees of freedom

EC:

Electrolyte concentration

ECDM:

Electrochemical discharge machining

ECM:

Electrochemical machining

EDM:

Electric discharge machining

FESEM:

Field emission scanning electron microscope

IEG:

Inter-electrode gap

MEMS:

Micro-electromechanical system

MOEMS:

Micro-optoelectromechanical system

MRR:

Material removal rate

MSD:

Mean square deviation

NaOH:

Sodium hydroxide

OA:

Orthogonal array

S/N ratio:

Signal-to-noise ratio

SR:

Surface roughness

SS:

Stainless steel

TWR:

Tool wear rate

V:

DC supply voltage

WC:

Tungsten carbide

(W)OC:

(Width of) overcut

%:

Percentage

References

  1. Schünemann, F.H.; Galárraga-Vinueza, M.E.; Magini, R.; Fredel, M.; Silva, F.; Souza, J.C.M.; Zhang, Y.; Henriques, B.: Zirconia surface modifications for implant dentistry. Mater. Sci. Eng. C. 98, 1294–1305, 2019. https://doi.org/10.1016/j.msec.2019.01.062.

    Article  Google Scholar 

  2. Chevalier, J.: What future for zirconia as a biomaterial? Biomaterials 27, 535–543, 2006. https://doi.org/10.1016/j.biomaterials.2005.07.034.

    Article  Google Scholar 

  3. Uwais, Z.A.; Hussein, M.A.; Samad, M.A.; Al-Aqeeli, N.: Surface modification of metallic biomaterials for better tribological properties: a review. Arab. J. Sci. Eng. 42, 4493–4512, 2017. https://doi.org/10.1007/s13369-017-2624-x.

    Article  Google Scholar 

  4. Moradi, M.; Ghanbari, F.; Manshouri, M.; Angali, K.A.: Photocatalytic degradation of azo dye using nano-ZrO2/UV/Persulfate: response surface modeling and optimization. Korean J. Chem. Eng. 33, 539–546, 2016. https://doi.org/10.1007/s11814-015-0160-5.

    Article  Google Scholar 

  5. Sudrajat, H.; Babel, S.; Sakai, H.; Takizawa, S.: Rapid enhanced photocatalytic degradation of dyes using novel N-doped ZrO2. J. Environ. Manag. 165, 224–234, 2016. https://doi.org/10.1016/j.jenvman.2015.09.036.

    Article  Google Scholar 

  6. Das, S.; Doloi, B.; Bhattacharyya, B.: Fabrication of stepped hole on zirconia bioceramics by ultrasonic machining. Mach. Sci. Technol. 20, 681–700, 2016. https://doi.org/10.1080/10910344.2016.1224016.

    Article  Google Scholar 

  7. Bian, R.; Ferraris, E.; He, N.; Reynaerts, D.: Process investigation on meso-scale hard milling of ZrO2 by diamond coated tools. Precis. Eng. 38, 82–91, 2014. https://doi.org/10.1016/j.precisioneng.2013.07.007.

    Article  Google Scholar 

  8. Kumar, S.; Dvivedi, A.: On machining of hard and brittle materials using rotary tool micro-ultrasonic drilling process. Mater. Manuf. Process., 2019. https://doi.org/10.1080/10426914.2019.1594255.

    Article  Google Scholar 

  9. Hu, P.; Zhang, J.M.; Pei, Z.J.; Treadwell, C.: lyde: modeling of material removal rate in rotary ultrasonic machining: designed experiments. J. Mater. Process. Technol. 129, 339–344, 2002. https://doi.org/10.1016/S0924-0136(02)00686-6.

    Article  Google Scholar 

  10. Abdo, B.M.A.; El-Tamimi, A.M.; Anwar, S.; Umer, U.; Alahmari, A.M.; Ghaleb, M.A.: Experimental investigation and multi-objective optimization of Nd:YAG laser micro-channeling process of zirconia dental ceramic. Int. J. Adv. Manuf. Technol. 98, 2213–2230, 2018. https://doi.org/10.1007/s00170-018-2374-2.

    Article  Google Scholar 

  11. Dear, F.C.; Shephard, J.D.; Wang, X.; Jones, J.D.C.; Hand, D.P.: Pulsed laser micromachining of yttria-stabilized zirconia dental ceramic for manufacturing. Int. J. Appl. Ceram. Technol. 5, 188–197, 2008. https://doi.org/10.1111/j.1744-7402.2008.02203.x.

    Article  Google Scholar 

  12. Guo, Y.; Hou, P.; Shao, D.; Li, Z.; Wang, L.; Tang, L.: High-speed wire electrical discharge machining of insulating zirconia with a novel assisting electrode. Mater. Manuf. Process. 29, 526–531, 2014. https://doi.org/10.1080/10426914.2014.892983.

    Article  Google Scholar 

  13. Rona, N.; Yenisey, M.; Kucukturk, G.; Gurun, H.; Cogun, C.; Esen, Z.: Effect of electrical discharge machining on dental Y-TZP ceramic-resin bonding. J. Prosthodont. Res. 61, 158–167, 2017. https://doi.org/10.1016/j.jpor.2016.07.006.

    Article  Google Scholar 

  14. Crichton, I.M.; McGeough, J.A.: Studies of the discharge mechanisms in electrochemical arc machining. J. Appl. Electrochem. 15, 113–119, 1985. https://doi.org/10.1007/BF00617748.

    Article  Google Scholar 

  15. Arab, J.; Mishra, D.K.; Kannojia, H.K.; Adhale, P.; Dixit, P.: Fabrication of multiple through-holes in non-conductive materials by electrochemical discharge machining for RF MEMS Packaging. J. Mater. Process. Technol. 271, 542–553, 2019. https://doi.org/10.1016/j.jmatprotec.2019.04.032.

    Article  Google Scholar 

  16. Malik, A.; Manna, A.: An experimental investigation on developed WECSM during micro slicing of e-glass fibre epoxy composite. Int. J. Adv. Manuf. Technol. 85, 2097–2106, 2016. https://doi.org/10.1007/s00170-016-8858-z.

    Article  Google Scholar 

  17. Yang, C.K.; Wu, K.L.; Hung, J.C.; Lee, S.M.; Lin, J.C.; Yan, B.H.: Enhancement of ECDM efficiency and accuracy by spherical tool electrode. Int. J. Mach. Tools Manuf. 51, 528–535, 2011. https://doi.org/10.1016/j.ijmachtools.2011.03.001.

    Article  Google Scholar 

  18. He, S.; Tong, H.; Liu, G.: Spark assisted chemical engraving (SACE) mechanism on ZrO2 ceramics by analyzing processed products. Ceram. Int. 44, 7967–7971, 2018. https://doi.org/10.1016/j.ceramint.2018.01.236.

    Article  Google Scholar 

  19. Liu, Y.; Zhang, C.; Li, S.; et al.: Experimental study of micro electrochemical discharge machining of ultra-clear glass with a rotating helical tool. Processes, 2019. https://doi.org/10.3390/pr7040195.

    Article  Google Scholar 

  20. Elhami, S.; Razfar, M.R.: Effect of ultrasonic vibration on the single discharge of electrochemical discharge machining. Mater. Manuf. Process. 33, 444–451, 2018. https://doi.org/10.1080/10426914.2017.1328113.

    Article  Google Scholar 

  21. Chen, J.C.; Lin, Y.A.; Kuo, C.L.; et al.: An improvement in the quality of holes drilled in quartz glassby electrochemical discharge machining. Smart Sci. 00, 1–6, 2019. https://doi.org/10.1080/23080477.2019.1597579.

    Article  Google Scholar 

  22. Sabahi, N.; Hajian, M.; Razfar, M.R.: Experimental study on the heat-affected zone of glass substrate machined by electrochemical discharge machining (ECDM) process. Int. J. Adv. Manuf. Technol., 2018. https://doi.org/10.1007/s00170-018-2027-5.

    Article  Google Scholar 

  23. Sundaram, M.; Chen, Y.J.; Rajurkar, K.: Pulse electrochemical discharge machining of glass-fiber epoxy reinforced composite. CIRP Ann. 68, 169–172, 2019. https://doi.org/10.1016/j.cirp.2019.04.113.

    Article  Google Scholar 

  24. Elhami, S.; Razfar, M.R.: Numerical and experimental study of discharge mechanism in the electrochemical discharge machining process. J. Manuf. Process. 50, 192–203, 2020. https://doi.org/10.1016/j.jmapro.2019.12.040.

    Article  Google Scholar 

  25. Singh, T.; Dvivedi, A.: On prolongation of discharge regime during ECDM by titrated flow of electrolyte. Int. J. Adv. Manuf. Technol. 107, 1819–1834, 2020. https://doi.org/10.1007/s00170-020-05126-y.

    Article  Google Scholar 

  26. Uthayakumar, M.; Thirumalai Kumaran, S.; Adam Khan, M.; Skoczypiec, S.; Bizon, W.: Microdrilling of AA (6351)-SiC-B4C composite using hybrid micro-ECDM process. J. Test. Eval. 48, 20180216, 2020. https://doi.org/10.1520/jte20180216.

    Article  Google Scholar 

  27. Kumar, M.; Vaishya, R.O.; Oza, A.D.; Suri, N.M.: Experimental investigation of wire-electrochemical discharge machining (WECDM) performance characteristics for quartz material. Silicon, 2019. https://doi.org/10.1007/s12633-019-00309-z.

    Article  Google Scholar 

  28. Oza, A.D.; Kumar, A.; Badheka, V.; Arora, A.: Traveling wire electrochemical discharge machining (TW-ECDM) of quartz using zinc coated brass wire : investigations on material removal rate and kerf width characteristics. Silicon, 2019. https://doi.org/10.1007/s12633-019-0070-y.

    Article  Google Scholar 

  29. Kumar, M.; Vaishya, R.O.; Suri, N.M.: Machinability study of zirconia material by micro-ECDM. In: Sharma, V.; Dixit, U.; Sørby, K.; Bhardwaj, A.; Trehan, R. (eds.) Manufacturing Engineering. Lecture Notes on Multidisciplinary Industrial Engineering, pp. 195–209. Springer, Singapore (2020). https://doi.org/10.1007/978-981-15-4619-8_15

    Chapter  Google Scholar 

  30. Singh, J.; Vaishya, R.; Kumar, M.: Fabrication of micro features on quartz glass using developed WECDM setup . ARPN J. Eng. Appl. Sci. 14, 725–731, 2019

    Article  Google Scholar 

  31. Tang, W.; Kang, X.; Zhao, W.: Experimental investigation of gas evolution in electrochemical discharge machining process. Int. J. Electrochem. Sci. 14, 970–984, 2019. https://doi.org/10.20964/2019.01.68.

    Article  Google Scholar 

  32. Li, D.; Li, W.; Wang, R.; Kou, H.: High-temperature strength of zirconia and its sensitivity to surface defects. Mater. Res. Express., 2019. https://doi.org/10.1088/2053-1591/ab1525.

    Article  Google Scholar 

  33. Rattan, N.; Mulik, R.S.: Improvement in material removal rate (MRR) using magnetic field in TW-ECSM process. Mater. Manuf. Process. 32, 101–107, 2017. https://doi.org/10.1080/10426914.2016.1176197.

    Article  Google Scholar 

  34. Verma, M.; Manna, A.: Experimental investigation of the effects of electrode shape on ECSM performance during machining of alumina ceramics. Int. J. Eng. Manag. Res. 8, 65–72, 2018

    Google Scholar 

  35. Kumar, S.; Batra, U.: Surface modification of die steel materials by EDM method using tungsten powder-mixed dielectric. J. Manuf. Process. 14, 35–40, 2012. https://doi.org/10.1016/j.jmapro.2011.09.002.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manoj Kumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, M., Vaishya, R.O., Suri, N.M. et al. An Experimental Investigation of Surface Characterization for Zirconia Ceramic Using Electrochemical Discharge Machining Process. Arab J Sci Eng 46, 2269–2281 (2021). https://doi.org/10.1007/s13369-020-05059-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-020-05059-4

Keywords

Navigation