Skip to main content

Advertisement

Log in

Compositional Effects and Optical Properties of P2O5 Doped Magnesium Silicate Mesoporous Thin Films

  • Research Article-Physics
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Mesoporous P2O5 doped magnesium silicate (MS-P) thin films were prepared using the activated sol–gel method and calcinated at different temperatures (200, 300, and 400 °C). The effect of both P2O5 content, and the calcinating temperature on the thin films structure, morphology, FTIR, and UV–Vis optical properties, was examined. The structural results demonstrate that the changing of the P2O5 content ratio and the temperature of preparation have significant effects on crystallization and the internal structure. All films were found to have a relative value of transmittance that reaches or exceeds about 90% in the visible range. The optical band gap shows a blue shift with increasing of the P2O5 content as well as with calcinating temperature increase. The refractive index is nearly constant and uniform in the overall visible zone for all samples. The optical conductivity shows nearly relative values and similar behaviors in all P2O5 contents at all calcinating temperatures, where it is constant at low energies and increases at higher incident photon energies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Lim, J.W.; Schmitt, M.L.; Brow, R.K.; Yung, S.W.: Properties and structures of tin borophosphate glasses. J. Non. Cryst. Solids 356, 1379–1384 (2010). https://doi.org/10.1016/j.jnoncrysol.2010.02.019

    Article  Google Scholar 

  2. Möncke, D.; Eckert, H.: Review on the structural analysis of fluoride-phosphate and fluoro-phosphate glasses. J. Non-Cryst. Solids X 3, 100026 (2019). https://doi.org/10.1016/j.nocx.2019.100026

    Article  Google Scholar 

  3. El Nahrawy, A.M.; Mansour, A.M.; Abou Hammad, A.B.; Ibrahim, R.S.; Abouelnaga, A.M.; Abdel-Aziz, M.S.: Optical, functional impact and antimicrobial of chitosan/phosphosilicate/Al2O3 nanosheets. J. Inorg. Organomet. Polym. Mater. 30, 3084–3094 (2020). https://doi.org/10.1007/s10904-020-01469-x

    Article  Google Scholar 

  4. El Nahrawy, A.M.; Hemdan, B.A.; Abou Hammad, A.B.; Abia, A.L.K.; Bakr, A.M.: Microstructure and antimicrobial properties of bioactive cobalt Co-doped copper aluminosilicate nanocrystallines. Silicon (2019). https://doi.org/10.1007/s12633-019-00326-y. (in press)

    Article  Google Scholar 

  5. Dahshan, A.; Hammad, A.B.A.; Aly, K.A.; El Nahrawy, A.M.: Eu2O3 role in the optical and photoluminescence properties of 50SiO2–7MgO–20ZnO–(23 − x)La2O3xEu2O3 nano-crystalline thin films. Appl. Phys. A Mater. Sci. Process. 126, 1–8 (2020). https://doi.org/10.1007/s00339-019-3207-3

    Article  Google Scholar 

  6. Ye, C.; Petit, L.; Koponen, J.J.; Hu, I.N.; Galvanauskas, A.: Short-term and long-term stability in ytterbium-doped high-power fiber lasers and amplifiers. IEEE J. Sel. Top. Quantum Electron. 20(5), 188–199 (2014)

    Article  Google Scholar 

  7. Shi, Q.; Kang, J.; Qu, Y.; Liu, S.; Khater, G.A.; Li, S.; Wang, Y.; Yue, Y.: Effect of rare-earth oxides on structure and chemical resistance of calcium aluminophosphate glasses. J. Non. Cryst. Solids. 491, 71–78 (2018). https://doi.org/10.1016/j.jnoncrysol.2018.04.010

    Article  Google Scholar 

  8. Cui, J.; Wen, H.; Xie, S.; Song, W.; Sun, M.; Yu, L.; Hao, Z.: Synthesis and characterization of aluminophosphate glasses with unique blue emission. Mater. Res. Bull. 103, 70–76 (2018). https://doi.org/10.1016/j.materresbull.2018.02.044

    Article  Google Scholar 

  9. Wen, H.; Xie, S.; Cui, J.; Mao, S.; Luo, L.; Brik, M.G.: Optical properties of 3d transition metal ion-doped aluminophosphate glasses. J. Lumin. 213, 263–272 (2019). https://doi.org/10.1016/j.jlumin.2019.05.016

    Article  Google Scholar 

  10. Liu, W.; Guo, X.Q.; Su, G.; Cao, L.X.; Wang, Y.G.; Duan, J.R.: A new organically-templated cobalt borophosphate with a novel borophosphatic anionic partial structure. J. Solid State Chem. 184, 2538–2542 (2011). https://doi.org/10.1016/j.jssc.2011.07.032

    Article  Google Scholar 

  11. Liang, X.; Yuan, S.; Yang, Y.; Chen, G.: Optical properties of Tb3+–Sm3+co-doped B2O3–Al2O3–SrO glasses. Phys. Chem. Glas. - Eur. J. Glas. Sci. Technol. Part B 51, 226–229 (2010)

    Google Scholar 

  12. Ehrt, D.: Deep-UV materials. Adv. Opt. Technol. 7, 225–242 (2018). https://doi.org/10.1515/aot-2018-0023

    Article  Google Scholar 

  13. Elabd, A.A.; Elhefnawy, O.A.; El Nahrawy, A.M.: A new organic-silica based nanocomposite prepared for spectrophotometric determination of uranyl ions. RSC Adv. 6, 9563–9570 (2016). https://doi.org/10.1039/c5ra21401g

    Article  Google Scholar 

  14. Elokr, M.M.; Metawe, F.; El-Nahrawy, A.M.; Osman, B.A.A.A.: Enhanced structural and spectroscopic properties of phosphosilicate nanostructures by doping with Al2O3 ions and calcinations temperature. Int. J. ChemTech Res. 9, 228–234 (2016)

    Google Scholar 

  15. Wang, Y.; Wang, F.; Zhou, J.; Zhu, H.; Liao, Q.; Li, L.; Zhu, Y.; Yuan, Y.; Zhang, J.: Effect of molybdenum on structural features and thermal properties of iron phosphate glasses and boron-doped iron phosphate glasses. J. Alloys Compd. 826, 154225 (2020). https://doi.org/10.1016/j.jallcom.2020.154225

    Article  Google Scholar 

  16. Issa, S.A.M.; Saddeek, Y.B.; Sayyed, M.I.; Tekin, H.O.; Kilicoglu, O.: Radiation shielding features using MCNPX code and mechanical properties of the PbO–Na2O–B2O3–CaO–Al2O3–SiO2 glass systems. Compos. Part B Eng. 167, 231–240 (2019). https://doi.org/10.1016/j.compositesb.2018.12.029

    Article  Google Scholar 

  17. Wang, B.; Chang, Q.Y.; Gao, K.; Fang, H.R.; Qing, T.; Zhou, N.N.: The synthesis of magnesium silicate hydroxide with different morphologies and the comparison of their tribological properties. Tribol. Int. 119, 672–679 (2018). https://doi.org/10.1016/j.triboint.2017.11.020

    Article  Google Scholar 

  18. Shao, Z.; He, X.; Niu, Z.; Huang, T.; Cheng, X.; Zhang, Y.: Ambient pressure dried shape-controllable sodium silicate based composite silica aerogel monoliths. Mater. Chem. Phys. 162, 346–353 (2015). https://doi.org/10.1016/j.matchemphys.2015.05.077

    Article  Google Scholar 

  19. Sprynskyy, M.; NiedojadŁo, J.; Buszewski, B.: Structural features of natural and acids modified chrysotile nanotubes. J. Phys. Chem. Solids 72, 1015–1026 (2011). https://doi.org/10.1016/j.jpcs.2011.05.013

    Article  Google Scholar 

  20. Savii, C.; Popovici, M.; Enache, C.; Subrt, J.; Niznansky, D.; Bakardzieva, S.; Caizer, C.; Hrianca, I.: Fe2O3–SiO2 composites obtained by sol–gel synthesis. In: Solid State Ionics, pp. 219–227. Elsevier (2002)

  21. ElNahrawy, A.M.; Mansour, A.M.; ElAttar, H.A.; Sakr, E.M.M.; Soliman, A.A.; Hammad, A.B.A.: Impact of Mn-substitution on structural, optical, and magnetic properties evolution of sodium–cobalt ferrite for opto-magnetic applications. J. Mater. Sci.: Mater. Electron. 31, 6224–6232 (2020). https://doi.org/10.1007/s10854-020-03176-2

    Article  Google Scholar 

  22. Youssef, A.M.; El-Nahrawy, A.M.; Abou Hammad, A.B.: Sol-gel synthesis and characterizations of hybrid chitosan-PEG/calcium silicate nanocomposite modified with ZnO-NPs and (E102) for optical and antibacterial applications. Int. J. Biol. Macromol. 97, 561–567 (2017). https://doi.org/10.1016/J.IJBIOMAC.2017.01.059

    Article  Google Scholar 

  23. Serra, J.; González, P.; Liste, S.; Serra, C.; Chiussi, S.; León, B.; Pérez-Amor, M.; Ylänen, H.O.; Hupa, M.: FTIR and XPS studies of bioactive silica based glasses. J. Non. Cryst. Solids 332, 20–27 (2003). https://doi.org/10.1016/j.jnoncrysol.2003.09.013

    Article  Google Scholar 

  24. Fellah, B.H.; Layrolle, P.: Sol-gel synthesis and characterization of macroporous calcium phosphate bioceramics containing microporosity. Acta Biomater. 5, 735–742 (2009). https://doi.org/10.1016/j.actbio.2008.09.005

    Article  Google Scholar 

  25. Glorieux, B.; Salminen, T.; Massera, J.; Lastusaari, M.; Petit, L.: Better understanding of the role of SiO2, P2O5 and Al2O3 on the spectroscopic properties of Yb3+ doped silica sol–gel glasses. J. Non. Cryst. Solids 482, 46–51 (2018). https://doi.org/10.1016/j.jnoncrysol.2017.12.021

    Article  Google Scholar 

  26. Karabulut, M.; Metwalli, E.; Brow, R.K.: Structure and properties of lanthanum–aluminum–phosphate glasses. J. Non-Cryst. Solids. 283, 211–219 (2001). https://doi.org/10.1016/S0022-3093(01)00420-3

    Article  Google Scholar 

  27. Šuleková, M.; Váhovská, L.; Hudák, A.; Žid, L.; Zeleňák, V.: A study of 5-fluorouracil desorption from mesoporous silica by RP-UHPLC. Molecules (2019). https://doi.org/10.3390/molecules24071317

    Article  Google Scholar 

  28. Kumari, P.; Dwivedi, Y.: Investigation of bright red emitting Mn doped aluminum silicate nanophosphor. Mater. Res. Bull. 88, 266–271 (2017). https://doi.org/10.1016/j.materresbull.2017.01.002

    Article  Google Scholar 

  29. Egodawatte, S.; Dominguez, S.; Larsen, S.C.: Solvent effects in the development of a drug delivery system for 5-fluorouracil using magnetic mesoporous silica nanoparticles. Microporous Mesoporous Mater. 237, 108–116 (2017). https://doi.org/10.1016/j.micromeso.2016.09.024

    Article  Google Scholar 

  30. Kajthunyakarn, W.; Sakloetsakun, D.; Pongjanyakul, T.: Sodium caseinate-magnesium aluminum silicate nanocomposite films for modified-release tablets. Mater. Sci. Eng. C 92, 827–839 (2018). https://doi.org/10.1016/j.msec.2018.07.040

    Article  Google Scholar 

  31. Farag, A.A.M.; Soliman, H.S.; Atta, A.A.: Analysis of dark and photovoltaic characteristics of Au/Pyronine G(Y)/p-Si/Al heterojunction. Synth. Met. 161, 2759–2764 (2012). https://doi.org/10.1016/j.synthmet.2011.10.017

    Article  Google Scholar 

  32. El Nahrawy, A.M.; Mansour, A.M.; Abou Hammad, A.B.; Wassel, A.R.: Effect of Cu incorporation on morphology and optical band gap properties of nano-porous lithium magneso-silicate (LMS) thin films. Mater. Res. Express 6, 016404 (2019). https://doi.org/10.1088/2053-1591/aae343

    Article  Google Scholar 

  33. Nahrawy, A.M.E.; Hammad, A.B.A.; Bakr, A.M.; Wassel, A.R.: Adjustment of morphological and dielectric properties of ZnTiO3 nanocrystalline using Al2O3 nanoparticles. Appl. Phys. A Mater. Sci. Process. (2019). https://doi.org/10.1007/s00339-018-2350-6

    Article  Google Scholar 

  34. Mansour, A.M.; Nasr, M.; Saleh, H.A.; Mahmoud, G.M.: Physical characterization of 5′,5″-dibromo-o-cresolsulfophthalein (BCP) spin-coated thin films and BCP/p-Si based diode. Appl. Phys. A Mater. Sci. Process. 125, 1–11 (2019). https://doi.org/10.1007/s00339-019-2920-2

    Article  Google Scholar 

  35. Hassan, N.; Mansour, A.M.M.; Roushdy, N.; Farag, A.A.M.A.M.; Osiris, W.G.G.: Optical sensing performance characteristics of Schottky devices diodes based nano-particle disodium 6-hydroxy-5-[(2-methoxy-5-methyl-4-sulfophenyl)azo]-2-naphthalenesulfonate thin films: a comparison study. Optik (Stuttgart) 158, 1255–1265 (2018). https://doi.org/10.1016/j.ijleo.2017.12.203

    Article  Google Scholar 

  36. Hemdan, B.A.; El Nahrawy, A.M.; Mansour, A.M.; Hammad, A.B.A.: Green sol–gel synthesis of novel nanoporous copper aluminosilicate for the eradication of pathogenic microbes in drinking water and wastewater treatment. Environ. Sci. Pollut. Res. 26, 9508–9523 (2019). https://doi.org/10.1007/s11356-019-04431-8

    Article  Google Scholar 

  37. Farag, A.A.M.A.M.M.; Mansour, A.M.M.; Ammar, A.H.H.; Rafea, M.A.A.: Characterization of electrical and optical absorption of organic based methyl orange for photovoltaic application. Synth. Met. 161, 2135–2143 (2011). https://doi.org/10.1016/j.synthmet.2011.08.015

    Article  Google Scholar 

  38. Mansour, A.M.; El Radaf, I.M.: Structural, optical and electrical properties of CuBiS2 thin films deposited by spray pyrolysis at different deposition times. Int. J. Microstruct. Mater. Prop. 14, 419 (2019). https://doi.org/10.1504/ijmmp.2019.102219

    Article  Google Scholar 

  39. El Nahrawy, A.M.; Abou Hammad, A.B.; Abdel-Aziz, M.S.; Wassel, A.R.: Spectroscopic and antimicrobial activity of hybrid chitosan/silica membranes doped with Al2O3 nanoparticles. Silicon 11, 1677–1685 (2019). https://doi.org/10.1007/s12633-018-9986-x

    Article  Google Scholar 

  40. El Nahrawy, A.M.; Hammad, A.B.A.; Youssef, A.M.; Mansour, A.M.; Othman, A.M.: Thermal, dielectric and antimicrobial properties of polystyrene-assisted/ITO: Cu nanocomposites. Appl. Phys. A Mater. Sci. Process. 125, 46 (2019). https://doi.org/10.1007/s00339-018-2351-5

    Article  Google Scholar 

  41. Kanyathare, B.; Asamoah, B.O.; Ishaq, U.; Amoani, J.; Räty, J.; Peiponen, K.E.: Optical transmission spectra study in visible and near-infrared spectral range for identification of rough transparent plastics in aquatic environments. Chemosphere 248, 126071 (2020). https://doi.org/10.1016/j.chemosphere.2020.126071

    Article  Google Scholar 

  42. Niskanen, I.; Peiponen, K.E.; Räty, J.: Assessment of refractive index of pigments by gaussian fitting of light backscattering data in context of the liquid immersion method. Appl. Spectrosc. 64, 558–561 (2010). https://doi.org/10.1366/000370210791211754

    Article  Google Scholar 

  43. Çayır Taşdemirci, T.: Influence of annealing on properties of SILAR deposited nickel oxide films. Vacuum 167, 189–194 (2019). https://doi.org/10.1016/j.vacuum.2019.05.047

    Article  Google Scholar 

  44. El Nahrawy, A.M.; Montaser, A.S.; Abou Hammad, A.B.; Ezzat, M.; El-Shakankery, M.: Copper lithium silicate/ZrO2 nanoparticles-coated Kevlar for improving UV–Vis absorbance/protection properties. Silicon (2019). https://doi.org/10.1007/s12633-019-00271-w

    Article  Google Scholar 

  45. Liu, L.; Qin, N.; Bao, D.: Structural, optical, and photoluminescent properties of sol–gel derived Eu-doped Ba1−xSrxTiO3 thin films. J. Mater. Sci.: Mater. Electron. 26, 3403–3408 (2015). https://doi.org/10.1007/s10854-015-2847-0

    Article  Google Scholar 

  46. Omar, N.A.S.; Fen, Y.W.; Matori, K.A.; Zaid, M.H.M.; Norhafizah, M.R.; Nurzilla, M.; Zamratul, M.I.M.: Synthesis and optical properties of europium doped zinc silicate prepared using low cost solid state reaction method. J. Mater. Sci.: Mater. Electron. 27, 1092–1099 (2016). https://doi.org/10.1007/s10854-015-3856-8

    Article  Google Scholar 

  47. El Nahrawy, A.M.; Ali, A.I.; Abou Hammad, A.B.; Mbarek, A.: Structural and optical properties of wet-chemistry Cu co-doped ZnTiO3 thin films deposited by spin coating method. Egypt. J. Chem. 61, 1073–1081 (2018). https://doi.org/10.21608/ejchem.2018.4069.1359

    Article  Google Scholar 

  48. Nahrawy, A.M.El: Structural studies of sol gel prepared nano-crystalline silica zinc titanate ceramic. Int. J. Adv. Eng. Technol. Comput. Sci. 2, 15–18 (2015)

    Google Scholar 

  49. Mansour, A.M.: Fabrication and characterization of a photodiode based on 5′,5′′-dibromo-o-cresolsulfophthalein (BCP). Silicon 11, 1–8 (2018). https://doi.org/10.1007/s12633-018-0016-9

    Article  Google Scholar 

  50. Darwish, A.A.A.; Rashad, M.; Bekheet, A.E.; El-Nahass, M.M.: Linear and nonlinear optical properties of GeSe2−xSnx (0 ≤ x ≤ 0.8) thin films for optoelectronic applications. J. Alloys Compd. 709, 640–645 (2017). https://doi.org/10.1016/j.jallcom.2016.08.280

    Article  Google Scholar 

  51. El-Diasty, F.; Aly, E.H.; El-Sawy, N.M.: Optical and two-photon absorption analysis of radiation-grafted fluoropolymer. J. Polym. Sci. Part B Polym. Phys. 48, 2045–2051 (2010). https://doi.org/10.1002/polb.22084

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Mansour.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El Nahrawy, A.M., Abou Hammad, A.B. & Mansour, A.M. Compositional Effects and Optical Properties of P2O5 Doped Magnesium Silicate Mesoporous Thin Films. Arab J Sci Eng 46, 5893–5906 (2021). https://doi.org/10.1007/s13369-020-05067-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-020-05067-4

Keywords

Navigation