Skip to main content
Log in

Negative electrical tunability of chitosan–graphene oxide nanocomposites

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Herein, we report negative anomalous electrical tunability of the nanocomposite chitosan and graphene oxide (CS–GO) films based upon the dependence of dielectric constant and resistivity on DC bias. The origin of such anomalous tunability can be traceable to the reversible transformation of GO to reduced graphene oxide. In this transformation, H+ ions are released from water or GO side groups and those of \({\text{NH}}_{3}^{ + }\) from CS; both ions participate in the reversible reduction process. Here, the capacitance exhibits negative tunability such that the dielectric constant increases and the resistivity decreases with increasing of DC bias. To probe this new phenomenon, we studied GO concentrations from 0 to 15 wt.% and water contents from 0 to 25 wt.%. Our results suggest that chitosan–GO nanocomposites can be readily prepared for the development of novel devices required in flexible organic electronics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. H. Yuan, L.-Y. Meng, S.-J. Park, Carbon Lett. 17, 11 (2016)

    Article  Google Scholar 

  2. X. Yang, Y. Tu, L. Li, S. Shang, X.-M. Tao, A.C.S. Appl, Mat. Interf. 2, 1707 (2010)

    Article  Google Scholar 

  3. Y. Wan, K.A.M. Creber, B. Peppley, V.T. Bui, Polymer 44, 1057 (2003)

    Article  Google Scholar 

  4. E. Avcu, F.E. Baştan, H.Z. Abdullah, M.A. Ur Rehman, Y.Y. Avcu, A.R. Boccaccini, Prog. Mat. Sci. 103, 69 (2019)

    Article  Google Scholar 

  5. H. Sun, L. Zhang, W. Xia, L. Chen, Z. Xu, W. Zhang, Appl. Phys. A 122, 632 (2016)

    Article  ADS  Google Scholar 

  6. Y. Liu, J. Wang, H. Zhang, C. Ma, J. Liu, S. Cao, X. Zhang, J. Power Sour. 269, 898 (2014)

    Article  ADS  Google Scholar 

  7. N.K. Gupta, B.C. Choudhary, A. Gupta, S.N. Achary, A. Sengupta, J. Mol. Liquids 289, 111121 (2019)

    Article  Google Scholar 

  8. Y. Jiang, J. Wu, Electrophoresis 40, 2084 (2019)

    Article  Google Scholar 

  9. P. Feng, P. Du, C. Wan, Y. Shi, Q. Wan, Sci. Rep. 6, 34065 (2016)

    Article  ADS  Google Scholar 

  10. S. Nie, Y. He, R. Liu, Y. Shi, Q. Wan, IEEE El. Dev. Lett 40, 459 (2019)

    Article  ADS  Google Scholar 

  11. S. Nie, Y. Yang, Y. He, Y. Shi, Q. Wan, IEEE El. Dev. Lett. 39, 363 (2018)

    Article  ADS  Google Scholar 

  12. Y. Yao, X. Chen, J. Zhu, B. Zeng, Z. Wu, X. Li, Nanoscale Res. Lett. 7, 363 (2012)

    Article  ADS  Google Scholar 

  13. H.F. Teoh, Y. Tao, E.S. Tok, G.W. Ho, C.H. Sow, Appl. Phys. Lett. 98, 173105 (2011)

    Article  ADS  Google Scholar 

  14. Y. Guo, B. Wu, H. Liu, Y. Ma, Y. Yang, J. Zheng, G. Yu, Y. Liu, Adv. Mater. 23, 4626 (2011)

    Article  Google Scholar 

  15. O.O. Ekiz, M. Urel, H. Guner, A.K. Mizrak, A. Dana, ACS Nano 5, 2475 (2011)

    Article  Google Scholar 

  16. M. Neek-Amal, R. Rashidi, R.R. Nair, D. Neilson, F.M. Peeters, Phys. Rev B 99, 115425 (2019)

    Article  ADS  Google Scholar 

  17. Q.J. Li, Z.P. Zhang, W. Ni, X.H. Sun, C.C. Wang, J. Alloys Comp. 695, 1561 (2017)

    Article  Google Scholar 

  18. K.C. Verma, R.K. Kotnala, N.S. Negi, Appl. Phys. A. 96, 1009 (2009)

    Article  ADS  Google Scholar 

  19. E. Prokhorov, Z. Barquera-Bibiano, A. Manzano-Ramírez, G. Luna-Barcenas,Y. Kovalenko, M. A. Hernández-Landaverde, B. E. Castillo Reyes, J Hernández Vargas. Mater. Res. Express. 6, 085622 (2019).

  20. M. Sabzevari, D.E. Cree, L.D. Wilson, ACS Omega 3, 13045–13054 (2018)

    Article  Google Scholar 

  21. D. Han, L. Yan, W. Chen, W. Li, Carbohyd. Polym. 83, 653–658 (2011)

    Article  Google Scholar 

  22. J. Einfeldt, D. Meibner, A. Rwasniewski, Prog. Polym. Sci. 26, 1419 (2001)

    Article  Google Scholar 

  23. N. Singh, K. Singh, D. Kaur, Current. Appl. Phys. 18, 220 (2018)

    ADS  Google Scholar 

  24. L.B. Kong, S. Li, T.S. Zhang, J.W. Zhai, F.Y.C. Boey, J. Ma, Prog. Mat. Sci. 55, 840 (2010)

    Article  Google Scholar 

  25. S. Kumar, J. Koh, Int. J. Biol. Macromol. 70, 559 (2014)

    Article  Google Scholar 

  26. Y.H. Khan, A. Islam, A. Sarwar, N. Gull, S.M. Khan, M.A. Munawar, S. Zia, A. Sabir, M. Shafiq, T. Jamil, Carbohyd. Polym. 146, 131 (2016)

    Article  Google Scholar 

  27. X. Guo, L. Qu, M. Tian, S. Zhu, X. Zhang, X. Tang, K. Sun, Water Environ. Res. 88, 579 (2016)

    Article  Google Scholar 

  28. H. Q. Wei, P. Zhou, Q. Q. Sun, L. H. Wang, Y. Geng, D. W. Zhang. Proc. 2012 IEEE Nanotech. Mat. Dev. Conf., Hawaii, USA (2012).

  29. A.C. Faucett, J.N. Flournoy, J.S. Mehta, J.M. Mativetsky, FlatChem. 1, 42 (2017)

    Article  Google Scholar 

  30. A.C. Faucett, J.M. Mativetsky, Carbon 95, 1069 (2015)

    Article  Google Scholar 

  31. G. Wu, J. Zhang, X. Wan, Y. Yang, S. Jiang, J. Mater. Chem. C. 2, 6249 (2014)

    Article  Google Scholar 

  32. K. Ogawa, T. Yui, K. Okuyama, Int. J. Biol. Macromol. 34, 115 (2004)

    Article  Google Scholar 

  33. X. Xia, Z. Zhong, G.J. Weng, Mech. Mat. 109, 42 (2017)

    Article  Google Scholar 

  34. Y. Chen, Y. Wu, G. Dai, Y. Ma, J. Mat. Sci. Mat. Electron. 30, 6234 (2019)

    Article  Google Scholar 

  35. S. Perumbilavil, P. Sankar, T.P. Rose, R. Philip, Appl. Phys. Lett. 107, 051104 (2015)

    Article  ADS  Google Scholar 

  36. A. Jabbar, G. Yasin, W.Q. Khan, M.Y. Anwar, R.M. Korai, M.N. Nizam, G. Muhyodin, RSC Adv. 7, 31100 (2017)

    Article  Google Scholar 

  37. J. Nath, A. Chowdhury, S.K. Dolui, Adv Polym. Technol. 37, 3665–3679 (2018)

    Article  Google Scholar 

  38. R. Justin, B. Chen, J. Mater. Chem. B 2, 3759 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge to Dr. G. Buonocore for TGA measurements, J. A. Muñoz Salas for technical assistance in electrical measurements, F. Rodriguez Melgarejo for assistance in Raman measurements, J. E. Urbina Alvarez and J. Villarreal Castellon for assistance in SEM measurements.

Funding

This work was partially supported by CONACYT Mexico (Grant A1-S-9557).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Prokhorov.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Availability of data and material

All data generated or analyzed during this study are included in this published article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prokhorov, E., Luna-Bárcenas, G. Negative electrical tunability of chitosan–graphene oxide nanocomposites. Appl. Phys. A 126, 934 (2020). https://doi.org/10.1007/s00339-020-04119-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-04119-8

Keywords

Navigation