Skip to main content
Log in

Unconventional magnetic excitations and spin dynamics of exotic quantum spin systems BaCo\(_2\)V\(_2\)O\(_8\) and Ba\(_3\)CuSb\(_2\)O\(_9\)

  • Review
  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

We review terahertz (THz) electron spin resonance studies of two types of exotic quantum spin systems, namely, the spin(S)-1/2 one-dimensional (1D) Ising-like antiferromagnet BaCo\(_2\)V\(_2\)O\(_8\) and the S=1/2 two-dimensional (2D) honeycomb-like antiferromagnet Ba\(_3\)CuSb\(_2\)O\(_9\) in magnetic fields of up to 50 T. For the former subject, unconventional magnetic excitations were identified below a critical magnetic field \(H_c\)(\(\sim \)4 T), where the exotic field-induced order-to-disorder transition occurs, and magnetic excitations in a Tomonaga-Luttinger liquid state were observed above \(H_c\). The novel magnetic excitations were analyzed with an S=1/2 1D XXZ model by considering the peculiar structure of this compound. For the latter subject, the orbital quantum dynamics of the spin liquid candidate Ba\(_3\)CuSb\(_2\)O\(_9\) was revealed using multifrequency electron spin resonance ranging from 9.3 GHz to 0.73 THz. The g-factor of the hexagonal Ba\(_3\)CuSb\(_2\)O\(_9\) single crystal possesses a weak six-fold symmetry at low frequencies, while two-fold symmetry is manifested at high frequencies. From the critical point between the two frequency regions, the frequency of the dynamic Jahn-Teller distortion is determined to be approximately 10 GHz. This dynamic distortion, accompanied by orbital quantum tunneling, proves the spin-orbital liquid state in Ba\(_3\)CuSb\(_2\)O\(_9\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. A. Kawamori, J. Yamauchi, H. Ohta (eds.), EPR in the 21st Century: Basics and Applications to Material, Life and Earth Sciences (section 10) (Elsevior, Amsterdam, 2002), p. 719

    Book  Google Scholar 

  2. D.M. Murphys, in Metal Oxide Catalysis, ed. by S.D. Jackson, J.S.J. Hargreaves (Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2009) pp. 1–50

  3. S. Sachdev, Quantum Phase Transitions (Cambridge University Press, Cambridge, 1999)

    MATH  Google Scholar 

  4. S. Suzuki, J. Inoue, B.K. Charkrabarti, Quantum Ising Phases and Transitions in Transverse Ising Models, 2nd edn. (Springer, New York, 2013)

    Book  Google Scholar 

  5. A. Dutta, G. Aeppli, B.K. Chakrabarti, U. Divakaran, T.F. Rosenbaum, D. Sen, in Quantum Phase Transitions in Transverse Field Spin Models: From Statistical Physics to Quantum Information (Cambridge University, Cambridge, 2015)

    Book  Google Scholar 

  6. Q. Faure, S. Takayoshi, S. Petit, V. Simonet, S. Raymond, L.P. Regnault, M. Boehm, J.S. White, M. Mȧnsson, C. Rüegg, P. Lejay, B. Canals, T. Lorenz, S.C. Furuya, T. Giamarchi, B. Grenier, Nat. Phys. 14, 716 (2018)

    Article  Google Scholar 

  7. Z. Wang, T. Lorenz, D.I. Gorbunov, P.T. Cong, Y. Kohama, S. Niesen, O. Breunig, J. Engelmayer, A. Herman, J. Wu, K. Kindo, J. Wosnitza, S. Zherlitsyn, A. Loidl, Phys. Rev. Lett. 120, 207205 (2018)

    Article  ADS  Google Scholar 

  8. Z. Zhang, K. Amelin, X. Wang, H. Zou, J. Yang, U. Nagel, T. Rõõm, T. Dey, A.A. Nugroho, T. Lorenz, J. Wu, Z. Wang, Phys. Rev. B 101, 220411(R) (2020)

    Article  ADS  Google Scholar 

  9. R. Wichmann, H. Muller-Buschbaum, Z. Anorg. Allg. Chem. 534, 153 (1986)

    Article  Google Scholar 

  10. Z. He, T. Taniyama, T. Kyumen, M. Itoh, Phys. Rev. B 72, 172403 (2005)

    Article  ADS  Google Scholar 

  11. S. Kimura, H. Yashiro, K. Okunishi, M. Hagiwara, Z. He, K. Kindo, T. Taniyama, M. Itoh, Phys. Rev. Lett. 99, 087602 (2007)

    Article  ADS  Google Scholar 

  12. A. Abragam, M.H.L. Pryce, Proc. R. Soc. A 206, 173 (1951)

    ADS  Google Scholar 

  13. M.E. Lines, Phys. Rev. 131, 546 (1963)

    Article  ADS  Google Scholar 

  14. H. Shiba, Y. Ueda, K. Okunishi, S. Kimura, K. Kindo, J. Phys. Soc. Jpn. 72, 2326 (2003)

    Article  ADS  Google Scholar 

  15. W.P. Lehmann, W. Breitiling, R. Weber, J. Phys. C: Solid State Phys. 14, 4655 (1981)

    Article  ADS  Google Scholar 

  16. S.E. Nagler, W.J.L. Buyers, R.L. Armstrong, B. Briat, Phys. Rev. B 27, 1784 (1983)

    Article  ADS  Google Scholar 

  17. H. Shiba, Prog. Theor. Phys. 64, 466 (1980)

    Article  ADS  Google Scholar 

  18. B. Grenier, S. Petit, V. Simonet, E. Canévet, L.-P. Regnault, S. Raymond, B. Canals, C. Berthier, P. Lejay, Phys. Rev. Lett. 114, 017201 (2015)

    Article  ADS  Google Scholar 

  19. S. Kimura, T. Takeuchi, K. Okunishi, M. Hagiwra, Z. He, K. Kindo, T. Taniyama, M. Itoh, Phys. Rev. Lett. 100, 057202 (2008)

    Article  ADS  Google Scholar 

  20. N. Ishimura, H. Shiba, Prog. Theor. Phys 63, 743 (1980)

    Article  ADS  Google Scholar 

  21. Z. Wang, J. Wu, W. Yang, A.K. Bera, D. Kamenskyi, A.T.M.N. Islam, S. Xu, J.M. Law, B. Lake, C. Wu, A. Loidl, Nature 554, 219 (2018)

    Article  ADS  Google Scholar 

  22. V.P. Köhl, Z. Anorg. Allg. Chem. 442, 280 (1978)

    Article  Google Scholar 

  23. H.D. Zhou, E.S. Choi, G. Li, L. Balicas, C.R. Wiebe, Y. Qiu, J.R.D. Copley, J.S. Gardner, Phys. Rev. Lett. 106, 147204 (2011)

    Article  ADS  Google Scholar 

  24. S. Nakatsuji, K. Kuga, K. Kimura, R. Satake, N. Katayama, E. Nishibori, H. Sawa, R. Ishii, M. Hagiwara, F. Bridges, T.U. Ito, W. Higemoto, Y. Karaki, M. Halim, A.A. Nugroho, J.A. Rodriguez-Rivera, M.A. Green, C. Broholm, Science 336, 559 (2012)

    Article  ADS  Google Scholar 

  25. N. Katayama, K. Kimura, Y. Han, J. Nasu, N. Drichko, Y. Nakanishi, M. Halim, Y. Ishiguro, R. Satake, E. Nishibori, M. Yoshizawa, T. Nakano, Y. Nozue, Y. Wakabayashi, S. Ishihara, M. Hagiwara, H. Sawa, S. Nakatsuji, Proc. Natl. Acad. Sci. 112, 9305 (2015)

    Article  ADS  Google Scholar 

  26. J.A. Quilliam, Bert, E. Kermarrec, C. Payen, C. Guillot-Deudon, P. Bonville, C. Baines, H. Luetkens, P. Mendels, Phys. Rev. Lett. 109, 117203 (2011)

    Article  ADS  Google Scholar 

  27. R. Englman, in The Jahn-Teller Effect in Molecules and Crystals (Wiley-Interscience, London, 1972) Chap. 6, 190

  28. J. Nasu, S. Ishihara, Phys. Rev. B 88, 094408 (2013)

    Article  ADS  Google Scholar 

  29. J. Nasu, S. Ishihara, Phys. Rev. B 91, 045117 (2015)

    Article  ADS  Google Scholar 

  30. Y. Han, M. Hagiwara, T. Nakano, Y. Nozue, K. Kimura, M. Halim, S. Nakatsuji, Phys. Rev. B 92, 180410(R) (2015)

    Article  ADS  Google Scholar 

  31. N. Drichko, C. Broholm, K. Kimura, R. Ishii, S. Nakasutji, Phys. Rev. B 93, 184425 (2016)

    Article  ADS  Google Scholar 

  32. B. Li, D. Louca, M. Feygenson, C.M. Brown, J.R.D. Copley, K. Iida, Phys. Rev. B 93, 014423 (2016)

    Article  ADS  Google Scholar 

  33. M. Altmeyer, F. Mila, A. Smerald, R. Valent, Phys. Rev. B 96, 115116 (2017)

    Article  ADS  Google Scholar 

  34. A. Smerald, F. Mila, Phys. Rev. Lett. 115, 147202 (2015)

    Article  ADS  Google Scholar 

  35. A. Abragam, B. Bleaney, in Electron Paramagnetic Resonance of Transition Ions (Clarendon Press, Oxford, 1970)

    Google Scholar 

  36. Y. Ishiguro, K. Kimura, S. Nakatsuji, S. Tsutsui, A.Q.R. Baron, T. Kimura, Y. Wakabayashi, Nat. Commun. 4, 2022 (2013)

    Article  ADS  Google Scholar 

  37. F. Reynaud, D. Mertz, F. Celestini, J.-M. Debierre, A.M. Ghorayeb, P. Simon, A. Stepanov, J. Voiron, C. Delmas, Phys. Rev. Lett. 86, 3638 (2001)

    Article  ADS  Google Scholar 

  38. V. Fritsch, J. Hemberger, N. Bütgen, E.-W. Scheidt, H.-A. Krug von Nidda, A. Loidl, V. Tsurkan, Phys. Rev. Lett. 92, 116401 (2004)

    Article  ADS  Google Scholar 

  39. M. Bonda, M. Holzapfel, S. de Brion, C. Darie, T. Fehér, P.J. Baker, T. Lancaster, S.J. Blundell, F.L. Pratt, Phys. Rev. B 78, 104409 (2008)

    Article  ADS  Google Scholar 

  40. H. Man, M. Halim, H. Sawa, M. Hagiwara, Y. Wakabayashi, S. Nakatsuji, J. Phys.: Condens. Matter 30, 443002 (2018)

    ADS  Google Scholar 

Download references

Acknowledgements

SK, KO, and MH are grateful to Z. He, T. Taniyama, and M. Itoh for the collaboration of ESR studies of BaCo\(_2\)V\(_2\)O\(_8\), as well as to T. Takeuchi, M. Matsuda, and T. Masuda for the useful discussions. YH and MH thank T. Nakano, Y. Nozue, K. Kimura, M. Halim, and S. Nakatsuji for their collaboration with ESR studies of Ba\(_3\)CuSb\(_2\)O\(_9\) and H. Sawa, N. Katayama, Y. Wakabayashi, S. Ishihara, C. Broholm, K. Kuga, and J. Nasu for the meaningful discussions. This study was partly supported by a Grant-in-Aid for Science Research from the Japanese Ministry of Education, Science, Sports, Culture, and Technology (Nos. 17072005, 1874018, 1870230, 24244059, 27505030). We would like to thank Editage (www.editage.com) and M.W. Meisel for English language editing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masayuki Hagiwara.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, Y., Kimura, S., Okunishi, K. et al. Unconventional magnetic excitations and spin dynamics of exotic quantum spin systems BaCo\(_2\)V\(_2\)O\(_8\) and Ba\(_3\)CuSb\(_2\)O\(_9\). Appl Magn Reson 52, 349–362 (2021). https://doi.org/10.1007/s00723-020-01296-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00723-020-01296-w

Navigation