Skip to main content
Log in

Microstructural Evolution and Biodegradation Response of Mg–2Zn–0.5Nd Alloy During Tensile and Compressive Deformation

  • Published:
Acta Metallurgica Sinica (English Letters) Aims and scope

Abstract

The effect of deformation behavior on the in vitro corrosion rate of Mg–2Zn–0.5Nd alloy was investigated experimentally after uniaxial tensile and compressive stress. The microstructure and texture were characterized using electron backscattered diffraction and X-ray diffraction, while potentiodynamic polarization and immersion tests were used to investigate the corrosion response after deformation. The result reveals that applied compressive stress has more dominant effect on the corrosion rate of Mg–2Zn–0.5Nd alloy as compared to tensile stress. Both tensile and compressive strains introduce dislocation slip and deformation twins in the alloy, thereby accelerating the corrosion rate due to the increased stress corrosion related to dislocation slips and deformation twins. The {10\(\bar{1}\)2} tension twinning and prismatic slip were the major contributors to tensile deformation while basal slip, and {10\(\bar{1}\)2} tension twin were obtainable during compressive deformation. The twinning activity after deformation increases with the plastic strain and this correlates with the degradation rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. L. Tan, X. Yu, P. Wan, K. Yang, J. Mater. Sci. Technol. 29, 503 (2013)

    CAS  Google Scholar 

  2. Y.S. Jeong, W.J. Kim, Corros. Sci. 82, 392 (2014)

    CAS  Google Scholar 

  3. J. Zhang, N. Kong, Y. Shi, J. Niu, L. Mao, H. Li, M. Xiong, G. Yuan, Corros. Sci. 85, 477 (2014)

    CAS  Google Scholar 

  4. J. Hofstetter, E. Martinelli, A.M. Weinberg, M. Becker, B. Mingler, P.J. Uggowitzer, J.F. Löffler, Corros. Sci. 91, 29 (2015)

    CAS  Google Scholar 

  5. Y. Shao, R.C. Zeng, S.Q. Li, L.Y. Cui, Y.H. Zou, S.K. Guan, Y.F. Zheng, Acta Metall. Sin. -Engl. Lett. 33, 615 (2020)

    CAS  Google Scholar 

  6. M.S. Song, R.C. Zeng, Y.F. Ding, R.W. Li, M. Easton, I. Cole, N. Birbilis, X.B. Chen, J. Mater. Sci. Technol. 35, 535 (2019)

    Google Scholar 

  7. R.C. Zeng, L.Y. Cui, W. Ke, Acta Metall. Sin. 54, 1215 (2018). (in Chinese)

    CAS  Google Scholar 

  8. X.B. Zhang, Z.X. Ba, Q. Wang, Y.J. Wu, Z.Z. Wang, Q. Wang, Corros. Sci. 88, 1 (2014)

    CAS  Google Scholar 

  9. G. Mani, M.D. Feldman, D. Patel, C.M. Agrawal, Biomaterials 28, 1689 (2007)

    CAS  Google Scholar 

  10. M. Niinomi, M. Nakai, J. Hieda, Acta Biomater. 8, 3888 (2012)

    CAS  Google Scholar 

  11. S.X. Zhang, X.N. Zhang, C.L. Zhao, J.A. Li, Y. Song, C.Y. Xie, H.R. Tao, Y. Zhang, Y.H. He, Y. Jiang, Y.J. Bian, Acta Biomater. 6, 626 (2010)

    CAS  Google Scholar 

  12. X. Zhang, G. Yuan, Z. Wang, Mater. Lett. 74, 128 (2012)

    CAS  Google Scholar 

  13. E. Zhang, L. Yang, Mater. Sci. Eng., A 497, 111 (2008)

    Google Scholar 

  14. E. Zhang, W. He, H. Du, K. Yang, Mater. Sci. Eng., A 488, 102 (2008)

    Google Scholar 

  15. H.S. Brar, J. Wong, M.V. Manuel, J. Mech. Behav. Biomed. Mater. 7, 87 (2012)

    Google Scholar 

  16. Z.Y. Ding, L.Y. Cui, R.C. Zeng, Y.B. Zhao, S.K. Guan, D.K. Xu, C.G. Lin, J. Mater. Sci. Technol. 34, 1550 (2018)

    Google Scholar 

  17. H. Liu, H. Huang, J.P. Sun, C. Wang, J. Bai, A.B. Ma, X.H. Chen, Acta Metall. Sin. -Engl. Lett. 32, 269 (2019)

    CAS  Google Scholar 

  18. F. Witte, V. Kaese, H. Haferkamp, E. Switzer, A. Meyer-Lindenberg, C.J. Wirth, H. Windhagen, Biomaterials 26, 3557 (2005)

    CAS  Google Scholar 

  19. B. Smola, L. Joska, V. Březina, I. Stulíková, F. Hnilica, Mater. Sci. Eng., C 32, 659 (2012)

    CAS  Google Scholar 

  20. L. Mao, G.Y. Yuan, S.H. Wang, J.L. Niu, G.H. Wu, W.J. Ding, Mater. Lett. 88, 1 (2012)

    CAS  Google Scholar 

  21. Y.J. Chen, Z.G. Xu, C. Smith, J. Sankar, Acta Biomater. 10, 4561 (2014)

    CAS  Google Scholar 

  22. J.M. Seitz, R. Eifler, J. Stahl, M. Kietzmann, F.W. Bach, Acta Biomater. 8, 3852 (2012)

    CAS  Google Scholar 

  23. R.C. Zeng, Z.Z. Yin, X.B. Chen, D.K. Xu, in Magnesium Alloys, ed. By T. Tański (Intechopen, London, 2018). https://doi.org/10.5772/intechopen.80083

  24. D. Song, A.B. Ma, J.H. Jiang, P.H. Lin, D.H. Yang, J.F. Fan, Corros. Sci. 53, 362 (2011)

    CAS  Google Scholar 

  25. P.L. Bonora, M. Andrei, A. Eliezer, E.M. Gutman, Corros. Sci. 44, 729 (2002)

    CAS  Google Scholar 

  26. D. Song, A. Ma, J. Jiang, P. Lin, D. Yang, J. Fan, Corros. Sci. 52, 481 (2010)

    CAS  Google Scholar 

  27. T. Zhang, Y. Shao, G. Meng, Z. Cui, F. Wang, Corros. Sci. 53, 1960 (2011)

    CAS  Google Scholar 

  28. Y. Zheng, Y. Li, J. Chen, Z. Zou, Corros. Sci. 90, 445 (2015)

    CAS  Google Scholar 

  29. J.A. Grogan, B.J. O’Brien, S.B. Leen, P.E. McHugh, Acta Biomater. 7, 3523 (2011)

    CAS  Google Scholar 

  30. X. Li, C. Chu, Y. Wei, C. Qi, J. Bai, C. Guo, F. Xue, P. Lin, P.K. Chu, Acta Biomater. 48, 468 (2017)

    CAS  Google Scholar 

  31. F. Tuchscheerer, L. Krüger, J. Mater. Sci. 50, 5104 (2015)

    CAS  Google Scholar 

  32. J.A. Grogan, D. Gastaldi, M. Castelletti, F. Migliavacca, G. Dubini, P.E. McHugh, Rev. Sci. Instrum. 84, 2088 (2013)

    Google Scholar 

  33. D. Liu, S. Hu, X. Yin, J. Liu, Z. Jia, Q. Li, Mater. Sci. Eng., C 84, 263 (2018)

    CAS  Google Scholar 

  34. S. Bagherifard, D.J. Hickey, S. Fintová, F. Pastorek, I. Fernandez-Pariente, M. Bandini, T.J. Webster, M. Guagliano, Acta Biomater. 66, 93 (2018)

    CAS  Google Scholar 

  35. K. Törne, A. Örnberg, J. Weissenrieder, Acta Biomater. 48, 541 (2017)

    Google Scholar 

  36. Y. Zong, G. Yuan, X. Zhang, L. Mao, J. Niu, W. Ding, Mater. Sci. Eng., B 177, 395 (2012)

    CAS  Google Scholar 

  37. I.P. Etim, W. Zhang, L. Tan, K. Yang, Bioact. Mater. 5, 133 (2020)

    Google Scholar 

  38. N.N. Aung, W. Zhou, Corros. Sci. 52, 589 (2010)

    CAS  Google Scholar 

  39. N. Liu, J. Wang, L. Wang, Y. Wu, L. Wang, Corros. Sci. 51, 1328 (2009)

    CAS  Google Scholar 

  40. J.D. Robson, N. Stanford, M.R. Barnett, Acta Mater. 59, 1945 (2011)

    CAS  Google Scholar 

  41. J. Bohlen, M.R. Nürnberg, J.W. Senn, D. Letzig, S.R. Agnew, Acta Mater. 55, 2101 (2007)

    CAS  Google Scholar 

  42. M. Knezevic, A. Levinson, R. Harris, R.K. Mishra, R.D. Doherty, S.R. Kalidindi, Acta Mater. 58, 6230 (2010)

    CAS  Google Scholar 

  43. S.R. Agnew, Ö. Duygulu, Int. J. Plast 21, 1161 (2005)

    CAS  Google Scholar 

  44. J. Koike, R. Ohyama, Acta Mater. 53, 1963 (2005)

    CAS  Google Scholar 

  45. J. Wang, L. Xu, R. Wu, J. Feng, J. Zhang, L. Hou, M. Zhang, Acta Metall. Sin. -Engl. Lett. 33, 490 (2020)

    CAS  Google Scholar 

  46. G.L. Song, Z. Xu, Electrochim. Acta 55, 4148 (2010)

    CAS  Google Scholar 

  47. M. Andrei, A. Eliezer, P.L. Bonora, E.M. Gutman, Mater. Corros. 53, 455 (2002)

    CAS  Google Scholar 

  48. G.B. Hamu, D. Eliezer, L. Wagner, J. Alloys Compd. 468, 222 (2009)

    Google Scholar 

Download references

Acknowledgements

This research was financially supported by the Key Program of China on Biomedical Materials Research and Tissue Organ Replacement (Nos. 2016YFC1101804 and 2016YFC1100604), the National Natural Science Foundation of China (Nos. 51971222 and 51801220), the Natural Science Foundation of Liaoning Province of China (No. 2019-MS-326), and the Youth Innovation Promotion Association, CAS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lili Tan.

Additional information

Available online at http://link.springer.com/journal/40195.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Etim, I.P., Zhang, W., Zhang, Y. et al. Microstructural Evolution and Biodegradation Response of Mg–2Zn–0.5Nd Alloy During Tensile and Compressive Deformation. Acta Metall. Sin. (Engl. Lett.) 34, 834–844 (2021). https://doi.org/10.1007/s40195-020-01164-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40195-020-01164-3

Keywords

Navigation