Skip to main content
Log in

Finite groups whose noncyclic graphs have positive genus

  • Published:
Acta Mathematica Hungarica Aims and scope Submit manuscript

Abstract

For a finite noncyclic group G, let \({\rm Cyc} (G)\) be a set of elements a of G such that \(\langle a, b\rangle\) is cyclic for each b of G. The noncyclic graph of G is a graph with the vertex set \(G\setminus {\rm Cyc} (G)\), having an edge between two distinct vertices x and y if \(\langle x, y\rangle\) is not cyclic. In this paper, we show that, for a fixed nonnegative integer k, there are at most finitely many finite noncyclic groups whose noncyclic graphs have (non)orientable genus k. We also classify the finite noncyclic groups whose noncyclic graphs have (non)orientable genus 1, 2, 3 and 4, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Aalipour, S. Akbari, P.J. Cameron, R. Nikandish, and F. Shaveisi, On the structure of the power graph and the enhanced power graph of a group, Electron. J. Combin., 24 (2017), #P3.16

  2. Abawajy, J., Kelarev, A.V., Chowdhury, M.: Power graphs: A survey. Electron. J. Graph Theory Appl. 1, 125–147 (2013)

    Article  MathSciNet  Google Scholar 

  3. Abawajy, J., Kelarev, A.V., Miller, M., Ryan, J.: Rees semigroups of digraphs for classification of data. Semigroup Forum 92, 121–134 (2016)

    Article  MathSciNet  Google Scholar 

  4. Abdollahi, A., Hassanabadi, A.M.: Non-cyclic graph associated with a group. J. Algebra Appl. 8, 243–257 (2009)

    Article  MathSciNet  Google Scholar 

  5. Abdollahi, A., Hassanabadi, A.M.: Noncyclic graph of a group. Comm. Algebra 35, 2057–2081 (2007)

    Article  MathSciNet  Google Scholar 

  6. Bera, S., Bhuniya, A.K.: On enhanced power graphs of finite groups. J. Algebra Appl. 17, 1850146 (2018)

    Article  MathSciNet  Google Scholar 

  7. Bloomfield, N., Wickham, C.: Local rings with genus two zero divisor graph. Comm. Algebra 38, 2965–2980 (2010)

    Article  MathSciNet  Google Scholar 

  8. Bubboloni, D., Iranmanesh, M.A., Shaker, S.M.: On some graphs associated with the finite alternating groups. Commun. Algebra 45, 5355–5373 (2017)

    Article  MathSciNet  Google Scholar 

  9. Cameron, P.J., Ghosh, S.: The power graph of a finite group. Discrete Math. 311, 1220–1222 (2011)

    Article  MathSciNet  Google Scholar 

  10. Chakrabarty, I., Ghosh, S., Sen, M.K.: Undirected power graphs of semigroups. Semigroup Forum 78, 410–426 (2009)

    Article  MathSciNet  Google Scholar 

  11. Chiang-Hsieh, H.-J., Smith, N.O., Wang, H.-J.: Commutative rings with toroidal zero-divisor graphs. Houston J. Math. 36, 1–31 (2010)

    Article  MathSciNet  Google Scholar 

  12. Costa, D., Davis, V., Gill, K., Hinkle, G., Reid, L.: Eulerian properties of non-commuting and non-cyclic graphs of finite groups. Comm. Algebra 46, 2659–2665 (2018)

    Article  MathSciNet  Google Scholar 

  13. H. S. M. Coxeter and W. O. J. Moser, Generators and Relations for Discrete Groups, Springer-Verlag (1972).

  14. A. Doostabadi and M. Farrokhi D.G., Embeddings of (proper) power graphs of finite groups, Algebra Discrete Math., 24 (2017), 221–234

  15. M. N. Ellingham and J. Z. Schroeder, Orientable Hamilton cycle embeddings of complete tripartite graphs. II: voltage graph constructions and applications, J. Graph, 77 (2014), 219–236

  16. Ellingham, M.N., Schroeder, J.Z.: Nonorientable Hamilton cycle embeddings of complete tripartite graphs. Discrete Math. 312, 1911–1917 (2012)

    Article  MathSciNet  Google Scholar 

  17. Ellingham, M.N., Stephens, D.C.: The orientable genus of some joins of complete graphs with large edgeless graphs. Discrete Math. 309, 1190–1198 (2009)

    Article  MathSciNet  Google Scholar 

  18. Ellingham, M.N., Stephens, D.C., Zha, X.: The counterexamples to the nonorientable genus conjecture for complete tripartite graphs. European J. Combin. 26, 387–399 (2005)

    Article  MathSciNet  Google Scholar 

  19. Feng, M., Ma, X., Wang, K.: The structure and metric dimension of the power graph of a finite group. European J. Combin. 43, 82–97 (2015)

    Article  MathSciNet  Google Scholar 

  20. Feng, M., Ma, X., Wang, K.: The full automorphism group of the power (di)graph of a finite group. European J. Combin. 52, 197–206 (2016)

    Article  MathSciNet  Google Scholar 

  21. G. Frobenius, Verallgemeinerung des Sylow'schen Satzes, Berliner Sitzungsber (1895)

  22. D. Gorenstein, Finite Groups, Chelsea Publishing Co. (New York, 1980)

  23. Jungerman, M.: Orientable triangular embeddings of \(K_{18}-K_3\) and \(K_{13}-K_3\). J. Combin. Theory Ser. B 16, 293–294 (1974)

    Article  MathSciNet  Google Scholar 

  24. Jungerman, M.: The nonorientable genus of the symmetric quadripartite graph. J. Combin. Theory Ser. B 26, 154–158 (1979)

    Article  MathSciNet  Google Scholar 

  25. Kelarev, A.V.: Ring Constructions and Applications, World Scientific. River Edge, NJ (2002)

    MATH  Google Scholar 

  26. A. V. Kelarev, Graph Algebras and Automata, Marcel Dekker (New York, 2003)

  27. Kelarev, A.V.: Labelled Cayley graphs and minimal automata. Australas. J. Combin. 30, 95–101 (2004)

    MathSciNet  MATH  Google Scholar 

  28. Kelarev, A.V., Quinn, S.J.: A combinatorial property and power graphs of groups. Contrib. General Algebra 12, 229–235 (2000)

    MathSciNet  MATH  Google Scholar 

  29. Kelarev, A.V., Quinn, S.J.: Directed graphs and combinatorial properties of semigroups. J. Algebra 251, 16–26 (2002)

    Article  MathSciNet  Google Scholar 

  30. Kelarev, A.V., Quinn, S.J.: A combinatorial property and power graphs of semigroups. Comment. Math. Uni. Carolinae 45, 1–7 (2004)

    MathSciNet  MATH  Google Scholar 

  31. Kelarev, A.V., Ryan, J., Yearwood, J.: Cayley graphs as classifiers for data mining: The inuence of asymmetries. Discret. Math. 309, 5360–536 (2009)

    Article  Google Scholar 

  32. Ma, X., Walls, G.L., Wang, K.: Power graphs of (non)orientable genus two. Commun. Algebra 47, 276–288 (2019)

    Article  MathSciNet  Google Scholar 

  33. Ma, X., Walls, G.L., Wang, K.: Finite groups with star-free noncyclic graphs. Open Math. 17, 906–912 (2019)

    Article  MathSciNet  Google Scholar 

  34. X. Ma, J. Li, and K. Wang, The full automorphism group of the noncyclic graph of a finite noncyclic, Mathematical Reports (to appear)

  35. Mirzargar, M., Ashrafi, A.R., Nadjafi-Arani, M.J.: On the power graph of a finite group. Filomat 26, 1201–1208 (2012)

    Article  MathSciNet  Google Scholar 

  36. K. O’Bryant, D. Patrick, L. Smithline and E. Wepsic, Some Facts about Cycles and Tidy Groups, Rose-Hulman Institute of Technology, Indiana, USA, Technical Report MS-TR 92–04 (1992).

  37. J. J. Rotman, An Introduction to the Theory of Groups, Springer-Verlag (New York, 1995)

  38. M. Sivagami and T. Tamizh Chelvam, On the trace graph of matrices, Acta Math. Hungar., 158 (2019), 235–250

  39. Su, H., Noguchi, K., Zhou, Y.: Finite commutative rings with higher genus unit graphs. J. Algebra Appl. 14, 1550002 (2015)

    Article  MathSciNet  Google Scholar 

  40. Su, H., Zhou, Y.: Finite commutative rings whose unitary Cayley graphs have positive genus. J. Commut. Algebra 10, 275–293 (2018)

    Article  MathSciNet  Google Scholar 

  41. Thomassen, C.: The graph genus problem is NP-complete. J. Algorithms 10, 568–576 (1989)

    Article  MathSciNet  Google Scholar 

  42. Wang, H.-J.: Zero-divisor graphs of genus one. J. Algebra 304, 666–678 (2006)

    Article  MathSciNet  Google Scholar 

  43. A.T. White, Graphs, Groups and Surfaces, North-Holland Mathematics Studies, vol. 188, North-Holland (Amsterdam, 1984)

  44. Wickham, C.: Rings whose zero-divisor graphs have positive genus. J. Algebra 321, 377–383 (2009)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgement

The authors are grateful to the referee for useful suggestions and comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Su.

Additional information

The first author was supported by the National Natural Science Foundation of China (Grant No. 11801441), and the Young Talent fund of University Association for Science and Technology in Shaanxi, China (Program No. 20190507).

The second author was supported by the National Natural Science Foundation of China (Grant No. 11661013).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, X., Su, H. Finite groups whose noncyclic graphs have positive genus. Acta Math. Hungar. 162, 618–632 (2020). https://doi.org/10.1007/s10474-020-01033-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10474-020-01033-6

Key words and phrases

Mathematics Subject Classification

Navigation