Skip to main content
Log in

Nitrate removal performances of a new aerobic denitrifier, Acinetobacter haemolyticus ZYL, isolated from domestic wastewater

  • Research Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

A new aerobic denitrifying bacterium ZYL was isolated from domestic wastewater sludge and identified as Acinetobacter haemolyticus (similarity 99%) by the 16S rDNA sequencing analysis. The strain could use nitrate, nitrite and ammonium as the sole N-source for growth with a final product of N2, demonstrating its good abilities for aerobic denitrification and heterotrophic nitrification. Single-factor experiment results showed that the effective removal of nitrate by strain ZYL occurred with carbon source sodium succinate, C/N 16–24, pH 5–9, temperature 20–40 °C, DO ≥ 4.84 mg/L. Ammonium was preferentially used by strain ZYL with nitrate and ammonium as the mixed nitrogen sources. According to nitrogen utilization, nitrogen balance analysis, enzyme assay and denitrifying gene amplification, nitrate was assimilated directly by the isolate for cell synthesis and also converted into N2 through aerobic denitrification. All these make strain ZYL an ideal choice for treating nitrogen-containing wastewater.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ahn Y-H (2006) Sustainable nitrogen elimination biotechnologies: a review. Process Biochem 41:1709–1721

    Article  CAS  Google Scholar 

  2. Habermeyer M, Roth A, Guth S, Diel P, Engel K-H, Epe B, Fürst P, Heinz V, Humpf H-U, Joost H-G, Knorr D, de Kok T, Kulling S, Lampen A, Marko D, Rechkemmer G, Rietjens I, Stadler RH, Vieths S, Vogel R, Steinberg P, Eisenbrand G (2015) Nitrate and nitrite in the diet: how to assess their benefit and risk for human health. Mol Nutr Food Res 59:106–128

    Article  CAS  Google Scholar 

  3. Ji B, Yang K, Zhu L, Jiang Y, Wang H, Zhou J, Zhang H (2015) Aerobic denitrification: a review of important advances of the last 30 years. Biotechnol Bioprocess Eng 20:643–651

    Article  CAS  Google Scholar 

  4. Zhang Y, Shi Z, Chen M, Dong X, Zhou J (2015) Evaluation of simultaneous nitrification and denitrification under controlled conditions by an aerobic denitrifier culture. Bioresour Technol 175:602–605

    Article  CAS  Google Scholar 

  5. Robertson LA, Kuenen JG (1984) Aerobic denitrification: a controversy revived. Arch Microbiol 139:351–354

    Article  CAS  Google Scholar 

  6. He T, Li Z, Sun Q, Xu Y, Ye Q (2016) Heterotrophic nitrification and aerobic denitrification by Pseudomonas tolaasii Y-11 without nitrite accumulation during nitrogen conversion. Bioresour Technol 200:493–499

    Article  CAS  Google Scholar 

  7. Zheng Z, Zhang D, Li W, Qin W, Huang X, Lv L (2018) Substrates removal and growth kinetic characteristics of a heterotrophic nitrifying-aerobic denitrifying bacterium, Acinetobacter harbinensis HITLi7T at 2 °C. Bioresour Technol 259:286–293

    Article  CAS  Google Scholar 

  8. Ma Q, Cai Y, He Z (2019) Complete genome sequence of a novel aerobic denitrifying strain, Pseudomonas monteilii CY06. Mar Genom 47:100661

    Article  Google Scholar 

  9. Yang J-R, Wang Y, Chen H, Lyu Y-K (2019) Ammonium removal characteristics of an acid-resistant bacterium Acinetobacter sp. JR1 from pharmaceutical wastewater capable of heterotrophic nitrification-aerobic denitrification. Bioresour Technol 274:56–64

    Article  CAS  Google Scholar 

  10. Zhao B, He YL, Hughes J, Zhang XF (2010) Heterotrophic nitrogen removal by a newly isolated Acinetobacter calcoaceticus HNR. Bioresour Technol 101:5194–5200

    Article  CAS  Google Scholar 

  11. Ren Y-X, Yang L, Liang X (2014) The characteristics of a novel heterotrophic nitrifying and aerobic denitrifying bacterium, Acinetobacter junii YB. Bioresour Technol 171:1–9

    Article  CAS  Google Scholar 

  12. Ahmad WA, Ahmad WH, Karim NA, Raj AS, Zakaria ZA (2013) Cr(VI) reduction in naturally rich growth medium and sugarcane bagasse by Acinetobacter haemolyticus. Int Biodeterior Biodegrad 85:571–576

    Article  CAS  Google Scholar 

  13. Lee M, Woo S-G, Ten LN (2012) Characterization of novel diesel-degrading strains Acinetobacter haemolyticus MJ01 and Acinetobacter johnsonii MJ4 isolated from oil-contaminated soil. World J Microbiol Biotechnol 28:2057–2067

    Article  CAS  Google Scholar 

  14. Bihari Z, Pettkó-Szandtner A, Csanádi G, Balázs M, Bartos P, Kesserű P, Kiss I, Mécs I (2007) Isolation and characterization of a novel n-alkane-degrading strain, Acinetobacter haemolyticus AR-46. Zeitschrift für Naturforschung C 62:285–295

    Article  CAS  Google Scholar 

  15. Zhang N, Chen H, Lyu Y, Wang Y (2019) Nitrogen removal by a metal-resistant bacterium, Pseudomonas putida ZN1, capable of heterotrophic nitrification–aerobic denitrification. J Chem Technol Biotechnol 94:1165–1175

    Article  CAS  Google Scholar 

  16. Rout PR, Bhunia P, Dash RR (2017) Simultaneous removal of nitrogen and phosphorous from domestic wastewater using Bacillus cereus GS-5 strain exhibiting heterotrophic nitrification, aerobic denitrification and denitrifying phosphorous removal. Bioresour Technol 244:484–495

    Article  CAS  Google Scholar 

  17. Guo L, Chen Q, Fang F, Hu Z, Wu J, Miao A, Xiao L, Chen X, Yang L (2013) Application potential of a newly isolated indigenous aerobic denitrifier for nitrate and ammonium removal of eutrophic lake water. Bioresour Technol 142:45–51

    Article  CAS  Google Scholar 

  18. Zheng H-Y, Liu Y, Gao X-Y, Ai G-M, Miao L-L, Liu Z-P (2012) Characterization of a marine origin aerobic nitrifying–denitrifying bacterium. J Biosci Bioeng 114:33–37

    Article  CAS  Google Scholar 

  19. Huang T, Guo L, Zhang H, Su J, Wen G, Zhang K (2015) Nitrogen-removal efficiency of a novel aerobic denitrifying bacterium, Pseudomonas stutzeri strain ZF31, isolated from a drinking-water reservoir. Bioresour Technol 196:209–216

    Article  CAS  Google Scholar 

  20. Luo X, Su J, Shao P, Liu H, Luo X (2018) Efficient autotrophic denitrification performance through integrating the bio-oxidation of Fe(II) and Mn(II). Chem Eng J 348:669–677

    Article  CAS  Google Scholar 

  21. Zhang H, Zhao Z, Kang P, Wang Y, Feng J, Jia J, Zhang Z (2018) Biological nitrogen removal and metabolic characteristics of a novel aerobic denitrifying fungus Hanseniaspora uvarum strain KPL108. Bioresour Technol 267:569–577

    Article  CAS  Google Scholar 

  22. Zhang W, Yan C, Shen J, Wei R, Gao Y, Miao A, Xiao L, Yang L (2019) Characterization of aerobic denitrifying bacterium Pseudomonas mendocina strain GL6 and its potential application in wastewater treatment plant effluent. Int J Environ Res Public Health 16:364

    Article  CAS  Google Scholar 

  23. Huang F, Pan L, Lv N, Tang X (2017) Characterization of novel Bacillus strain N31 from mariculture water capable of halophilic heterotrophic nitrification–aerobic denitrification. J Biosci Bioeng 124:564–571

    Article  CAS  Google Scholar 

  24. López-Maury L, Marguerat S, Bähler J (2008) Tuning gene expression to changing environments: from rapid responses to evolutionary adaptation. Nat Rev Genet 9:583–593

    Article  Google Scholar 

  25. Song ZF, An J, Fu GH, Yang XL (2011) Isolation and characterization of an aerobic denitrifying Bacillus sp. YX-6 from shrimp culture ponds. Aquaculture 319:188–193

    Article  CAS  Google Scholar 

  26. Zhao B, Cheng DY, Tan P, An Q, Guo JS (2018) Characterization of an aerobic denitrifier Pseudomonas stutzeri strain XL-2 to achieve efficient nitrate removal. Bioresour Technol 250:564–573

    Article  CAS  Google Scholar 

  27. Patureau D, Bernet N, Delgenès JP, Moletta R (2000) Effect of dissolved oxygen and carbon–nitrogen loads on denitrification by an aerobic consortium. Appl Microbiol Biotechnol 54:535–542

    Article  CAS  Google Scholar 

  28. Idi A, Ibrahim Z, Mohamad SE, Majid ZA (2015) Biokinetics of nitrogen removal at high concentrations by Rhodobacter sphaeroides ADZ101. Int Biodeterior Biodegrad 105:245–251

    Article  CAS  Google Scholar 

  29. Liu Y, Ai G-M, Miao L-L, Liu Z-P (2016) Marinobacter strain NNA5, a newly isolated and highly efficient aerobic denitrifier with zero N2O emission. Bioresour Technol 206:9–15

    Article  CAS  Google Scholar 

  30. Zhang J, Wu P, Hao B, Yu Z (2011) Heterotrophic nitrification and aerobic denitrification by the bacterium Pseudomonas stutzeri YZN-001. Bioresour Technol 102:9866–9869

    Article  CAS  Google Scholar 

  31. Zhang S, Sun X, Fan Y, Qiu T, Gao M, Wang X (2017) Heterotrophic nitrification and aerobic denitrification by Diaphorobacter polyhydroxybutyrativorans SL-205 using poly(3-hydroxybutyrate-co-3-hydroxyvalerate) as the sole carbon source. Bioresour Technol 241:500–507

    Article  CAS  Google Scholar 

  32. Padhi SK, Tripathy S, Sen R, Mahapatra AS, Mohanty S, Maiti NK (2013) Characterisation of heterotrophic nitrifying and aerobic denitrifying Klebsiella pneumoniae CF-S9 strain for bioremediation of wastewater. Int Biodeterior Biodegrad 78:67–73

    Article  CAS  Google Scholar 

  33. Chen P, Li J, Li QX, Wang Y, Li S, Ren T, Wang L (2012) Simultaneous heterotrophic nitrification and aerobic denitrification by bacterium Rhodococcus sp. CPZ24. Bioresour Technol 116:266–270

    Article  CAS  Google Scholar 

  34. Richardson DJ, Watmough NJ (1999) Inorganic nitrogen metabolism in bacteria. Curr Opin Chem Biol 3:207–219

    Article  CAS  Google Scholar 

  35. Huang X, Li W, Zhang D, Qin W (2013) Ammonium removal by a novel oligotrophic Acinetobacter sp. Y16 capable of heterotrophic nitrification–aerobic denitrification at low temperature. Bioresour Technol 146:44–50

    Article  CAS  Google Scholar 

  36. Shi Z, Zhang Y, Zhou J, Chen M, Wang X (2013) Biological removal of nitrate and ammonium under aerobic atmosphere by Paracoccus versutus LYM. Bioresour Technol 148:144–148

    Article  CAS  Google Scholar 

  37. Kraft B, Strous M, Tegetmeyer HE (2011) Microbial nitrate respiration—genes, enzymes and environmental distribution. J Biotechnol 155:104–117

    Article  CAS  Google Scholar 

  38. Reyes F, Roldán MD, Klipp W, Castillo F, Moreno-Vivián C (1996) Isolation of periplasmic nitrate reductase genes from Rhodobacter sphaeroides DSM 158: structural and functional differences among prokaryotic nitrate reductases. Mol Microbiol 19:1307–1318

    Article  CAS  Google Scholar 

  39. Sparacino-Watkins C, Stolz JF, Basu P (2014) Nitrate and periplasmic nitrate reductases. Chem Soc Rev 43:676–706

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Natural Science Foundation of China (Grant no. 51778397), the International Cooperation Projects of Shanxi Province (Grant no. 201603D421040), and the Key Research and Development Program of Shanxi Province (Grant no. 201903D311004).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ying Wang or Hu Chen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Zou, YL., Chen, H. et al. Nitrate removal performances of a new aerobic denitrifier, Acinetobacter haemolyticus ZYL, isolated from domestic wastewater. Bioprocess Biosyst Eng 44, 391–401 (2021). https://doi.org/10.1007/s00449-020-02451-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-020-02451-0

Keywords

Navigation