1932

Abstract

Ocean temperature variability is a fundamental component of the Earth's climate system, and extremes in this variability affect the health of marine ecosystems around the world. The study of marine heatwaves has emerged as a rapidly growing field of research, given notable extreme warm-water events that have occurred against a background trend of global ocean warming. This review summarizes the latest physical and statistical understanding of marine heatwaves based on how they are identified, defined, characterized, and monitored through remotely sensed and in situ data sets. We describe the physical mechanisms that cause marine heatwaves, along with their global distribution, variability, and trends. Finally, we discuss current issues in this developing research area, including considerations related to thechoice of climatological baseline periods in defining extremes and how to communicate findings in the context of societal needs.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-marine-032720-095144
2021-01-03
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/marine/13/1/annurev-marine-032720-095144.html?itemId=/content/journals/10.1146/annurev-marine-032720-095144&mimeType=html&fmt=ahah

Literature Cited

  1. Alexander MA, Scott JD, Deser C 2000. Processes that influence sea surface temperature and ocean mixed layer depth variability in a coupled model. J. Geophys. Res. Oceans 105:16823–42
    [Google Scholar]
  2. Alexander MA, Scott JD, Friedland KD, Mills KE, Nye JA et al. 2018. Projected sea surface temperatures over the 21st century: changes in the mean, variability and extremes for large marine ecosystem regions of northern oceans. Elem. Sci. Anthr. 6:9
    [Google Scholar]
  3. Beggs H. 2020. Temperature. Earth Observation: Data, Processing and Applications, Vol. 3B: Applications—Surface Waters BA Harrison, JA Anstee, A Dekker, S Phinn, N Mueller, G Byrne Melbourne, Aust: Coop. Res. Cent. Spat. Inf. In press
    [Google Scholar]
  4. Bensoussan N, Romano JC, Harmelin JG, Garrabou J 2010. High resolution characterization of northwest Mediterranean coastal waters thermal regimes: to better understand responses of benthic communities to climate change. Estuar. Coast. Shelf Sci. 87:43141
    [Google Scholar]
  5. Benthuysen JA, Feng M, Zhong L 2014. Spatial patterns of warming off Western Australia during the 2011 Ningaloo Niño: quantifying impacts of remote and local forcing. Cont. Shelf Res. 91:232–46
    [Google Scholar]
  6. Benthuysen JA, Oliver ECJ, Chen K, Wernberg T 2020. Editorial: advances in understanding marine heatwaves and their impacts. Front. Mar. Sci. 7:147
    [Google Scholar]
  7. Benthuysen JA, Oliver ECJ, Feng M, Marshall AG 2018. Extreme marine warming across tropical Australia during austral summer 2015–2016. J. Geophys. Res. Oceans 123:1301–26
    [Google Scholar]
  8. Bond NA, Cronin MF, Freeland H, Mantua N 2015. Causes and impacts of the 2014 warm anomaly in the NE Pacific. Geophys. Res. Lett. 42:3414–20
    [Google Scholar]
  9. Burrows MT, Bates AE, Costello MJ, Edwards M, Edgar GJ et al. 2019. Ocean community warming responses explained by thermal affinities and temperature gradients. Nat. Clim. Change 9:959–63
    [Google Scholar]
  10. Cai W, Cowan T. 2013. Why is the amplitude of the Indian Ocean Dipole overly large in CMIP3 and CMIP5 climate models. ? Geophys. Res. Lett. 40:1200–5
    [Google Scholar]
  11. Capotondi A, Sardeshmukh PD. 2015. Optimal precursors of different types of ENSO events. Geophys. Res. Lett. 42:9952–60
    [Google Scholar]
  12. Capotondi A, Wittenberg A, Newman M, Di Lorenzo E, Yu J et al. 2015. Understanding ENSO diversity. Bull. Am. Meteorol. Soc. 96:921–38
    [Google Scholar]
  13. Caputi N, Kangas M, Denham A, Feng M, Pearce A et al. 2016. Management adaptation of invertebrate fisheries to an extreme marine heat wave event at a global warming hot spot. Ecol. Evol. 6:3583–93
    [Google Scholar]
  14. Cavanaugh KC, Dangremond EM, Doughty CL, Williams AP, Parker JD et al. 2019. Climate-driven regime shifts in a mangrove–salt marsh ecotone over the past 250 years. PNAS 116:21602–8
    [Google Scholar]
  15. Chen K, Gawarkiewicz GG, Kwon Y-O, Zhang WG 2015. The role of atmospheric forcing versus ocean advection during the extreme warming of the northeast U.S. continental shelf in 2012. J. Geophys. Res. Oceans 120:4324–39
    [Google Scholar]
  16. Chen K, Gawarkiewicz GG, Lentz SJ, Bane JM 2014. Diagnosing the warming of the northeastern U.S. coastal ocean in 2012: a linkage between the atmospheric jet stream variability and ocean response. J. Geophys. Res. Oceans 119:218–27
    [Google Scholar]
  17. Coles S 2001. An Introduction to Statistical Modeling of Extreme Values London: Springer
  18. Collins M, Sutherland M, Bouwer L, Cheong S-M, Frölicher T et al. 2012. Extremes, abrupt changes and managing risks. IPCC Special Report on the Ocean and Cryosphere in a Changing Climate H-O Pörtner, DC Roberts, V Masson-Delmotte, P Zhai, M Tignor, et al 589–655 Geneva: Intergov. Panel Clim. Change
    [Google Scholar]
  19. Cronin MF, Gentemann CL, Edson JB, Ueki I, Bourassa M et al. 2019. Air-sea fluxes with a focus on heat and momentum. Front. Mar. Sci. 6:430
    [Google Scholar]
  20. Darmaraki S, Somot S, Sevault F, Nabat P, Narvaez WDC et al. 2019. Future evolution of marine heatwaves in the Mediterranean Sea. Clim. Dyn. 53:1371–92
    [Google Scholar]
  21. DeCastro M, Gómez-Gesteira M, Costoya X, Santos F 2014. Upwelling influence on the number of extreme hot SST days along the Canary upwelling ecosystem. J. Geophys. Res. Oceans 119:3029–40
    [Google Scholar]
  22. Deser C, Alexander MA, Xie S-P, Phillips AS 2010. Sea surface temperature variability: patterns and mechanisms. Annu. Rev. Mar. Sci. 2:115–43
    [Google Scholar]
  23. Di Lorenzo E, Mantua N 2016. Multi-year persistence of the 2014/15 North Pacific marine heatwave. Nat. Clim. Change 6:1042–47
    [Google Scholar]
  24. Di Lorenzo E, Ohman MD 2013. A double-integration hypothesis to explain ocean ecosystem response to climate forcing. PNAS 110:2496–99
    [Google Scholar]
  25. Doi T, Behera S, Yamagata T 2013. Predictability of the Ningaloo Niño/Niña. Sci. Rep. 3:2892
    [Google Scholar]
  26. Doi T, Yuan C, Behera SK, Yamagata T 2015. Predictability of the California Niño/Niña. J. Clim. 28:7237–49
    [Google Scholar]
  27. Donelson JM, Sunday JM, Figueira WF, Gaitán-Espitia JD, Hobday AJ et al. 2019. Understanding interactions between plasticity, adaptation and range shifts in response to marine environmental change. Philos. Trans. R. Soc. B 374:20180186
    [Google Scholar]
  28. Donner SD, Skirving WJ, Little CM, Oppenheimer M, Hoegh-Guldberg O 2005. Global assessment of coral bleaching and required rates of adaptation under climate change. Glob. Change Biol. 11:2251–65
    [Google Scholar]
  29. Eakin CM, Morgan JA, Heron SF, Smith TB, Liu G et al. 2010. Caribbean corals in crisis: record thermal stress, bleaching, and mortality in 2005. PLOS ONE 5:e13969
    [Google Scholar]
  30. Eakin CM, Sweatman HP, Brainard RE 2019. The 2014–2017 global-scale coral bleaching event: insights and impacts. Coral Reefs 38:539–45
    [Google Scholar]
  31. Echevin V, Colas F, Espinoza-Morriberon D, Vasquez L, Anculle T, Gutierrez D 2018. Forcings and evolution of the 2017 coastal El Niño off Northern Peru and Ecuador. Front. Mar. Sci. 5:367
    [Google Scholar]
  32. Elzahaby Y, Schaeffer A. 2019. Observational insight into the subsurface anomalies of marine heatwaves. Front. Mar. Sci. 6:745
    [Google Scholar]
  33. Eyring V, Bony S, Meehl GA, Senior CA, Stouffer RJ, Taylor KE 2016. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev. 9:1937–58
    [Google Scholar]
  34. Feng M, McPhaden M, Xie S, Hafner J 2013. La Niña forces unprecedented Leeuwin Current warming in 2011. Sci. Rep. 3:1277
    [Google Scholar]
  35. Fewings MR, Brown KS. 2019. Regional structure in the marine heat wave of summer 2015 off the western United States. Front. Mar. Sci. 6:564
    [Google Scholar]
  36. Field CB, Barros V, Stocker TF, Dahe Q, Dokken DJ 2012. Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation: Special Report of the Intergovernmental Panel on Climate Change Cambridge, UK: Cambridge Univ. Press
  37. Firth LB, Knights AM, Bell SS 2011. Air temperature and winter mortality: implications for the persistence of the invasive mussel, Perna viridis in the intertidal zone of the south-eastern United States. J. Exp. Mar. Biol. Ecol. 400:25056
    [Google Scholar]
  38. Fordyce AJ, Ainsworth TD, Heron SF, Leggat W 2019. Marine heatwave hotspots in coral reef environments: physical drivers, ecophysiological outcomes and impact upon structural complexity. Front. Mar. Sci. 6:498
    [Google Scholar]
  39. Fox RJ, Donelson JM, Schunter C, Ravasi T, Gaitán-Espitia JD 2019. Beyond buying time: the role of plasticity in phenotypic adaptation to rapid environmental change. Philos. Trans. R. Soc. B 374:20180174
    [Google Scholar]
  40. Frankignoul C. 1985. Sea surface temperature anomalies, planetary waves, and air-sea feedback in the middle latitudes. Rev. Geophys. 23:35790
    [Google Scholar]
  41. Frankignoul C, Hasselmann K. 1977. Stochastic climate models, part II: application to sea-surface temperature anomalies and thermocline variability. Tellus 29:289305
    [Google Scholar]
  42. Frölicher TL, Fischer EM, Gruber N 2018. Marine heatwaves under global warming. Nature 560:36064
    [Google Scholar]
  43. Frölicher TL, Laufkötter C. 2018. Emerging risks from marine heat waves. Nat. Commun. 9:650
    [Google Scholar]
  44. Garrabou J, Coma R, Bensoussan N, Bally M, Chevaldonné P et al. 2009. Mass mortality in Northwestern Mediterranean rocky benthic communities: effects of the 2003 heat wave. Glob. Change Biol. 15:1090–103
    [Google Scholar]
  45. Gawarkiewicz G, Chen K, Forsyth J, Bahr F, Mercer AM et al. 2019. An advective marine heatwave in the Middle Atlantic Bight: shelfbreak exchange driven thermohaline anomalies in early 2017. Front. Mar. Sci. 6:712
    [Google Scholar]
  46. Gentemann CL, Fewings MR, García-Reyes M 2017. Satellite sea surface temperatures along the West Coast of the United States during the 2014–2016 northeast Pacific marine heat wave. Geophys. Res. Lett. 44:31219
    [Google Scholar]
  47. Gumbel EJ. 1958. Statistics of Extremes New York: Columbia Univ. Press
  48. Gunter G. 1951. Destruction of fishes and other organisms on the south Texas coast by the cold wave of January 28–February 3, 1951. Ecology 32:73136
    [Google Scholar]
  49. Hobday AJ, Alexander LV, Perkins SE, Smale DA, Straub SC et al. 2016. A hierarchical approach to defining marine heatwaves. Prog. Oceanogr. 141:22738
    [Google Scholar]
  50. Hobday AJ, Oliver ECJ, Sen Gupta A, Benthuysen JA, Burrows MT et al. 2018a. Categorizing and naming marine heatwaves. Oceanography 31:216273
    [Google Scholar]
  51. Hobday AJ, Spillman CM, Eveson JP, Hartog JR, Zhang X, Brodie S 2018b. A framework for combining seasonal forecasts and climate projections to aid risk management for fisheries and aquaculture. Front. Mar. Sci. 5:137
    [Google Scholar]
  52. Holbrook NJ, Claar DC, Hobday AJ, McInnes KL, Oliver ECJ et al. 2020a. ENSO driven ocean extremes and their ecosystem impacts. El Niño Southern Oscillation in a Changing Climate MJ McPhaden, A Santoso, W Cai 40928 New York: Wiley & Sons
    [Google Scholar]
  53. Holbrook NJ, Scannell HA, Gupta AS, Benthuysen JA, Feng M et al. 2019. A global assessment of marine heatwaves and their drivers. Nat. Commun. 10:2624
    [Google Scholar]
  54. Holbrook NJ, Sen Gupta A, Oliver ECJ, Hobday AJ, Benthuysen JA et al. 2020b. Keeping pace with marine heatwaves. Nat. Rev. Earth Environ. 1:48293
    [Google Scholar]
  55. Holt SA, Holt GJ. 1983. Cold death of fishes at Port Aransas, Texas: January 1982. Southwest. Nat. 28:464–66
    [Google Scholar]
  56. Hu D, Wu L, Cai W, Sen Gupta A, Ganachaud A et al. 2015. Pacific western boundary currents and their roles in climate. Nature 522:299308
    [Google Scholar]
  57. Hu Z, Kumar A, Jha B, Zhu J, Huang B 2017. Persistence and predictions of the remarkable warm anomaly in the northeastern Pacific Ocean during 2014–16. J. Clim. 30:689702
    [Google Scholar]
  58. Hughes TP, Kerry JT, Álvarez-Noriega M, Álvarez-Romero JG, Anderson KD et al. 2017. Global warming and recurrent mass bleaching of corals. Nature 543:37377
    [Google Scholar]
  59. Jacox MG. 2019. Marine heatwaves in a changing climate. Nature 571:48587
    [Google Scholar]
  60. Jacox MG, Alexander MA, Siedlecki S, Chen K, Kwon Y-O et al. 2020. Seasonal-to-interannual prediction of US coastal marine ecosystems: forecast methods, mechanisms of predictability, and priority developments. Prog. Oceanogr. 183:102307
    [Google Scholar]
  61. Jacox MG, Alexander MA, Stock CA, Hervieux G 2017. On the skill of seasonal sea surface temperature forecasts in the California Current System and its connection to ENSO variability. Clim. Dyn. 53:751933
    [Google Scholar]
  62. Jacox MG, Tommasi D, Alexander MA, Hervieux G, Stock CA 2019. Predicting the evolution of the 2014–2016 California Current System marine heatwave from an ensemble of coupled global climate forecasts. Front. Mar. Sci. 6:497
    [Google Scholar]
  63. Kataoka T, Tozuka T, Yamagata T 2017. Generation and decay mechanisms of Ningaloo Niño/Niña. J. Geophys. Res. Oceans 122:891332
    [Google Scholar]
  64. Kay JE, Deser C, Phillips A, Mai A, Hannay C et al. 2015. The Community Earth System Model (CESM) large ensemble project: a community resource for studying climate change in the presence of internal climate variability. Bull. Am. Meteorol. Soc. 96:133349
    [Google Scholar]
  65. Leadbetter MR, Lindgren G, Rootzén H 1983. Extremes and Related Properties of Random Sequences and Processes Berlin: Springer
  66. Lee T, Hobbs WR, Willis JK, Halkides D, Fukumori I et al. 2010. Record warming in the South Pacific and western Antarctica associated with the strong central-Pacific El Niño in 2009–10. Geophys. Res. Lett. 37:L19704
    [Google Scholar]
  67. Leriorato JC, Nakamura Y. 2019. Unpredictable extreme cold events: a threat to range-shifting tropical reef fishes in temperate waters. Mar. Biol. 166:110
    [Google Scholar]
  68. Lewis SC, Mallela J. 2018. A multifactor risk analysis of the record 2016 Great Barrier Reef bleaching. Bull. Am. Meteorol. Soc. 99:S144–49
    [Google Scholar]
  69. Lim Y, Son S-W, Kim D 2018. MJO prediction skill of the subseasonal-to-seasonal prediction models. J. Clim. 31:407594
    [Google Scholar]
  70. Lima FP, Wethey DS. 2012. Three decades of high-resolution coastal sea surface temperatures reveal more than warming. Nat. Commun. 3:704
    [Google Scholar]
  71. Ling S, Johnson C, Ridgway K, Hobday A, Haddon M 2009. Climate-driven range extension of a sea urchin: inferring future trends by analysis of recent population dynamics. Glob. Change Biol. 15:71931
    [Google Scholar]
  72. Liu G, Heron SF, Eakin CM, Muller-Karger FE, Vega-Rodriguez M et al. 2014. Reef-scale thermal stress monitoring of coral ecosystems: new 5-km global products from NOAA Coral Reef Watch. Remote Sens 6:11579606
    [Google Scholar]
  73. Manta G, de Mello S, Trinchin R, Badagian J, Barreiro M 2018. The 2017 record marine heatwave in the southwestern Atlantic shelf. Geophys. Res. Lett. 45:1244956
    [Google Scholar]
  74. Marshall AG, Hendon HH, Feng M, Schiller A 2015. Initiation and amplification of the Ningaloo Niño. Clim. Dyn. 45:236785
    [Google Scholar]
  75. McPhaden MJ, Zebiak SE, Glantz MH 2006. ENSO as an integrating concept in earth science. Science 314:174045
    [Google Scholar]
  76. Mills KE, Pershing AJ, Brown CJ, Chen Y, Chiang F-S et al. 2013. Fisheries management in a changing climate: lessons from the 2012 ocean heat wave in the Northwest Atlantic. Oceanography 26:2191–95
    [Google Scholar]
  77. Moisan JR, Niiler PP. 1998. The seasonal heat budget of the North Pacific: net heat flux and heat storage rates (1950–1990). J. Phys. Oceanogr. 28:40121
    [Google Scholar]
  78. Myers TA, Mechoso CR, Cesana GV, DeFlorio MJ, Waliser DE 2018. Cloud feedback key to marine heatwave off Baja California. Geophys. Res. Lett. 45:434552
    [Google Scholar]
  79. Newman M, Wittenberg AT, Cheng L, Compo GP, Smith CA 2018. The extreme 2015/16 El Niño, in the context of historical climate variability and change. Bull. Am. Meteorol. Soc. 99:S16–20
    [Google Scholar]
  80. Olita A, Sorgente R, Natale S, Gaberšek S, Ribotti A et al. 2007. Effects of the 2003 European heatwave on the Central Mediterranean Sea: surface fluxes and the dynamical response. Ocean Sci 3:27389
    [Google Scholar]
  81. Oliver ECJ. 2019. Mean warming not variability drives marine heatwave trends. Clim. Dyn. 53:165359
    [Google Scholar]
  82. Oliver ECJ, Benthuysen JA, Bindoff NL, Hobday AJ, Holbrook NJ et al. 2017. The unprecedented 2015/16 Tasman Sea marine heatwave. Nat. Commun. 8:16101
    [Google Scholar]
  83. Oliver ECJ, Burrows MT, Donat MG, Sen Gupta A, Alexander LV et al. 2019. Projected marine heatwaves in the 21st century and the potential for ecological impact. Front. Mar. Sci. 6:734
    [Google Scholar]
  84. Oliver ECJ, Donat MG, Burrows MT, Moore PJ, Smale DA et al. 2018a. Longer and more frequent marine heatwaves over the past century. Nat. Commun. 9:1324
    [Google Scholar]
  85. Oliver ECJ, Perkins-Kirkpatrick SE, Holbrook NJ, Bindoff NL 2018b. Anthropogenic and natural influences on record 2016 marine heat waves. Bull. Am. Meteorol. Soc. 99:S44–48
    [Google Scholar]
  86. Oliver ECJ, Wotherspoon SJ, Chamberlain MA, Holbrook NJ 2014a. Projected Tasman Sea extremes in sea surface temperature through the twenty-first century. J. Clim. 27:198098
    [Google Scholar]
  87. Oliver ECJ, Wotherspoon SJ, Holbrook NJ 2014b. Estimating extremes from global ocean and climate models: a Bayesian hierarchical model approach. Prog. Oceanogr. 122:7791
    [Google Scholar]
  88. Paz-García DA, Balart EF, García-de-Léon FJ 2012. Cold water bleaching of Pocillopora in the Gulf of California. Proceedings of the 12th International Coral Reef Symposium D Yellowlees, TP Hughes, pap. ICRS2012_9A_10 Townsville, Aust: James Cook Univ.
    [Google Scholar]
  89. Pearce AF, Feng M. 2013. The rise and fall of the “marine heat wave” off Western Australia during the summer of 2010/2011. J. Mar. Syst. 111:13956
    [Google Scholar]
  90. Pearce AF, Lenanton R, Jackson G, Moore J, Feng M, Gaughan D 2011. The “marine heat wave” off Western Australia during the summer of 2010/11 Tech. Rep. 222, West. Aust. Fish. Mar. Res. Lab., North Beach, Aust.
  91. Perkins SE, Alexander LV. 2013. On the measurement of heat waves. J. Clim. 26:450017
    [Google Scholar]
  92. Perkins SE, Alexander LV, Nairn J 2012. Increasing frequency, intensity and duration of observed global heatwaves and warm spells. Geophys. Res. Lett. 39:L20714
    [Google Scholar]
  93. Perkins-Kirkpatrick S, King A, Cougnon E, Holbrook N, Grose M et al. 2019. The role of natural variability and anthropogenic climate change in the 2017/18 Tasman Sea marine heatwave. Bull. Am. Meteorol. Soc. 100:S105–10
    [Google Scholar]
  94. Philander SGH. 1983. El Niño Southern Oscillation phenomena. Nature 302:295301
    [Google Scholar]
  95. Pilo GS, Holbrook NJ, Kiss AE, Hogg AM 2019. Sensitivity of marine heatwave metrics to ocean model resolution. Geophys. Res. Lett. 46:1460412
    [Google Scholar]
  96. Power S, Delage F, Wang G, Smith I, Kociuba G 2017. Apparent limitations in the ability of CMIP5 climate models to simulate recent multi-decadal change in surface temperature: implications for global temperature projections. Clim. Dyn. 49:5369
    [Google Scholar]
  97. Rebert J-P, Donguy J-R, Eldin G, Wyrtki K 1985. Relations between sea level, thermocline depth, heat content, and dynamic height in the tropical Pacific Ocean. J. Geophys. Res. Oceans 90:1171925
    [Google Scholar]
  98. Roberts H, Rouse L, Walker ND, Hudson J 1982. Cold-water stress in Florida Bay and northern Bahamas: a product of winter cold-air outbreaks. J. Sediment. Res. 52:14555
    [Google Scholar]
  99. Rouault M, Illig S, Bartholomae C, Reason C, Bentamy A 2007. Propagation and origin of warm anomalies in the Angola Benguela upwelling system in 2001. J. Mar. Syst. 68:47388
    [Google Scholar]
  100. Ruthrof KX, Breshears DD, Fontaine JB, Froend RH, Matusick G et al. 2018. Subcontinental heat wave triggers terrestrial and marine, multi-taxa responses. Sci. Rep. 8:13094
    [Google Scholar]
  101. Salinger MJ, Renwick J, Behrens E, Mullan AB, Diamond HJ et al. 2019. The unprecedented coupled ocean-atmosphere summer heatwave in the New Zealand region 2017/18: drivers, mechanisms and impacts. Environ. Res. Lett. 14:044023
    [Google Scholar]
  102. Schaeffer A, Roughan M. 2017. Subsurface intensification of marine heatwaves off southeastern Australia: the role of stratification and local winds. Geophys. Res. Lett. 44:502533
    [Google Scholar]
  103. Schlegel RW, Oliver ECJ, Hobday AJ, Smit AJ 2019. Detecting marine heatwaves with sub-optimal data. Front. Mar. Sci. 6:737
    [Google Scholar]
  104. Schlegel RW, Oliver ECJ, Wernberg T, Smit AJ 2017. Nearshore and offshore co-occurrence of marine heatwaves and cold-spells. Prog. Oceanogr. 151:189205
    [Google Scholar]
  105. Sen Gupta A, McGregor S, Van Sebille E, Ganachaud A, Brown JN, Santoso A 2016. Future changes to the Indonesian Throughflow and Pacific circulation: the differing role of wind and deep circulation changes. Geophys. Res. Lett. 43:166978
    [Google Scholar]
  106. Smale DA, Wernberg T, Oliver ECJ, Thomsen M, Harvey BP et al. 2019. Marine heatwaves threaten global biodiversity and the provision of ecosystem services. Nat. Clim. Change 9:30612
    [Google Scholar]
  107. Sparnocchia S, Schiano M, Picco P, Bozzano R, Cappelletti A 2006. The anomalous warming of summer 2003 in the surface layer of the central Ligurian Sea (western Mediterranean). Ann. Geophys. 24:443–52
    [Google Scholar]
  108. Spillman C, Alves O, Hudson D 2013. Predicting thermal stress for coral bleaching in the Great Barrier Reef using a coupled ocean–atmosphere seasonal forecast model. Int. J. Climatol. 33:100114
    [Google Scholar]
  109. Stott PA, Stone DA, Allen MR 2004. Human contribution to the European heatwave of 2003. Nature 432:61014
    [Google Scholar]
  110. Stuart-Smith RD, Edgar GJ, Barrett NS, Kininmonth SJ, Bates AE 2015. Thermal biases and vulnerability to warming in the world's marine fauna. Nature 528:8892
    [Google Scholar]
  111. Sugimoto S, Qiu B, Kojima A 2020. Marked coastal warming off Tokai attributable to Kuroshio large meander. J. Oceanogr. 76:14154
    [Google Scholar]
  112. Tan H, Cai R. 2018. What caused the record-breaking warming in East China Seas during August 2016. ? Atmos. Sci. Lett. 19:853
    [Google Scholar]
  113. Taschetto AS, Sen Gupta A, Jourdain NC, Santoso A, Ummenhofer CC, England MH 2014. Cold tongue and warm pool ENSO events in CMIP5: mean state and future projections. J. Clim. 27:286185
    [Google Scholar]
  114. Tseng Y-H, Ding R, Huang X-M 2017. The warm Blob in the northeast Pacific—the bridge leading to the 2015/16 El Niño. Environ. Res. Lett. 12:054019
    [Google Scholar]
  115. Tuckett CA, Wernberg T. 2018. High latitude corals tolerate severe cold spell. Front. Mar. Sci. 5:14
    [Google Scholar]
  116. Walsh JE, Thoman RL, Bhatt US, Bieniek PA, Brettschneider B et al. 2018. The high latitude marine heat wave of 2016 and its impacts on Alaska. Bull. Am. Meteorol. Soc. 99:S39–43
    [Google Scholar]
  117. Weller E, Min S-K, Lee D, Kug J-S, Cai W, Yeh S-W 2015. Human contribution to the 2014 record high sea surface temperatures over the western tropical and northeast Pacific Ocean. Bull. Am. Meteorol. Soc. 96:S100–4
    [Google Scholar]
  118. Wernberg T, Bennett S, Babcock RC, De Bettignies T, Cure K et al. 2016. Climate-driven regime shift of a temperate marine ecosystem. Science 353:16972
    [Google Scholar]
  119. Wernberg T, Smale DA, Tuya F, Thomsen MS, Langlois TJ et al. 2013. An extreme climatic event alters marine ecosystem structure in a global biodiversity hotspot. Nat. Clim. Change 3:7882
    [Google Scholar]
  120. WMO (World Meteorol. Organ.) 2017. WMO guidelines on the calculation of climate normals Doc. WMO-No. 1203, WMO Geneva:
  121. WMO (World Meteorol. Organ.) 2018. Guide to climatological practices Doc. WMO-No. 100, WMO Geneva:
  122. Wu L, Cai W, Zhang L, Nakamura H, Timmermann A et al. 2012. Enhanced warming over the global subtropical western boundary currents. Nat. Clim. Change 2:16166
    [Google Scholar]
  123. Zhang N, Feng M, Hendon HH, Hobday AJ, Zinke J 2017. Opposite polarities of ENSO drive distinct patterns of coral bleaching potentials in the southeast Indian Ocean. Sci. Rep. 7:2443
    [Google Scholar]
  124. Zhao S, Jin F-F, Stuecker MF 2019. Improved predictability of the Indian Ocean Dipole using seasonally modulated ENSO forcing forecasts. Geophys. Res. Lett. 46:998090
    [Google Scholar]
/content/journals/10.1146/annurev-marine-032720-095144
Loading
/content/journals/10.1146/annurev-marine-032720-095144
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error