Skip to main content
Log in

Changes in Bone Turnover, Inflammatory, Oxidative Stress, and Metabolic Markers in Women Consuming Iron plus Vitamin D Supplements: a Randomized Clinical Trial

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

We aimed to investigate whether combination of vitamin D and iron supplementation, comparing vitamin D alone, could modify bone turnover, inflammatory, oxidative stress, and metabolic markers. Eighty-seven women with hemoglobin (Hb) ≤ 12.7 g/dL and 25OHD ≤ 29 ng/mL vitamin D deficiency/insufficiency aged 18–45 years were randomly assigned into two groups: (1) receiving either 1000 IU/day vitamin D3 plus 27 mg/day iron (D-Fe); (2) vitamin D3 plus placebo supplements (D-P), for 12 weeks. In D-Fe group, significant decrease in red blood cells (RBC) (P = 0.001) and hematocrit (Hct) (P = 0.004) and increases in mean corpuscular hemoglobin concentration (MCHC) (P = 0.001), 25OHD (P < 0.001), osteocalcin (P < 0.001), high-density cholesterol (HDL) (P = 0.041), and fasting blood sugar (FBS) (P < 0.001) were observed. D-P group showed significant decrease in RBC (P < 0.001), Hb (P < 0.001), Hct (P < 0.001), mean corpuscular volume (MCV) (P = 0.004), mean corpuscular hemoglobin (MCH) (P < 0.001), MCHC (P = 0.005), serum ferritin (P < 0.001), and low-density cholesterol (LDL) (P = 0.016) and increases of 25OHD (P < 0.001), osteocalcin (P < 0.001), C-terminal telopeptide (CTX) (P = 0.025), triglyceride (TG) (P = 0.004), FBS (P < 0.001), and interleukin-6 (IL-6) (P = 0.001) at week 12. After the intervention, the D-P group had between-group increases in mean change in the osteocalcin (P = 0.007) and IL-6 (P = 0.033), and decreases in the RBC (P < 0.001), Hb (P < 0.001), Hct (P < 0.001), and MCV (P = 0.001), compared with the D-Fe group. There were significant between-group changes in MCH (P < 0.001), MCHC (P < 0.001), ferritin (P < 0.001), and serum iron (P = 0.018). Iron–vitamin D co-supplementation does not yield added benefits for improvement of bone turnover, inflammatory, oxidative stress, and metabolic markers, whereas, vitamin D alone may have some detrimental effects on inflammatory and metabolic markers. IRCT registration number: IRCT201409082365N9

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data Availability

The data can be made available on reasonable request to the corresponding author.

References

  1. Holick MF (2007) Vitamin D deficiency. N Engl J Med 357(3):266–281. https://doi.org/10.1056/NEJMra070553

    Article  CAS  PubMed  Google Scholar 

  2. McLean E, Cogswell M, Egli I, Wojdyla D, de Benoist B (2009) Worldwide prevalence of anaemia, WHO Vitamin and Mineral Nutrition Information System, 1993-2005. Public Health Nutr 12(4):444–454. https://doi.org/10.1017/s1368980008002401

    Article  PubMed  Google Scholar 

  3. Grober U, Spitz J, Reichrath J, Kisters K, Holick M (2013) Vitamin D: update 2013: from rickets prophylaxis to general preventive healthcare. Dermatoendocrinol 5(3):331–347

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Wang L-X, Wang N, Xu Q-L, Yan W, Dong L, Li B-L (2017) Effects of vitamin D combined with pioglitazone hydrochloride on bone mineral density and bone metabolism in Type 2 diabetic nephropathy. Biosci Rep 37(2):BSR20160544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Lang C-L, Wang M-H, Chiang C-K, Lu K-C (2014) Vitamin D and the immune system from the nephrologist’s viewpoint. ISRN Endocrinol 2014:1–11

    Article  CAS  Google Scholar 

  6. Nair-Shalliker V, Armstrong BK, Fenech M (2012) Does vitamin D protect against DNA damage? Mutat Res 733(1):50–57

    Article  CAS  PubMed  Google Scholar 

  7. Wang C (2013) Role of vitamin d in cardiometabolic diseases. Exp Diabetes Res 2013

  8. vinh quoc Lu’o’ng K, Nguyen LT (2013) The beneficial role of vitamin D in obesity: possible genetic and cell signaling mechanisms. Nutr J 12:89. https://doi.org/10.1186/1475-2891-12-89

    Article  CAS  PubMed  Google Scholar 

  9. Lawson M, Thomas M (1999) Vitamin D concentrations in Asian children aged 2 years living in England: population survey. BMJ 318(7175):28

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Grindulis H, Scott PH, Belton NR, Wharton BA (1986) Combined deficiency of iron and vitamin D in Asian toddlers. Arch Dis Child 61(9):843–848

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Azizi-Soleiman F, Vafa M, Abiri B, Safavi M (2016) Effects of iron on vitamin D metabolism: a systematic review. Int J Prev Med 7

  12. Bikle DD (2014) Vitamin D metabolism, mechanism of action, and clinical applications. Chem Biol 21(3):319–329. https://doi.org/10.1016/j.chembiol.2013.12.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Heldenberg D, Tenenbaum G, Weisman Y (1992) Effect of iron on serum 25-hydroxyvitamin D and 24,25-dihydroxyvitamin D concentrations. Am J Clin Nutr 56(3):533–536

    Article  CAS  PubMed  Google Scholar 

  14. Wright I, Blanco-Rojo R, Fernández MC, Toxqui L, Moreno G, Pérez-Granados AM, de la Piedra C, Remacha ÁF, Vaquero MP (2013) Bone remodelling is reduced by recovery from iron-deficiency anaemia in premenopausal women. J Physiol Biochem 69(4):889–896

    Article  CAS  PubMed  Google Scholar 

  15. Balogh E, Paragh G, Jeney V (2018) Influence of iron on bone homeostasis. Pharmaceuticals (Basel) 11(4). https://doi.org/10.3390/ph11040107

  16. Ilich-Ernst JZ, McKenna AA, Badenhop NE, Clairmont AC, Andon MB, Nahhas RW, Goel P, Matkovic V (1998) Iron status, menarche, and calcium supplementation in adolescent girls. Am J Clin Nutr 68(4):880–887

    Article  CAS  PubMed  Google Scholar 

  17. Beutler E, Waalen J (2006) The definition of anemia: what is the lower limit of normal of the blood hemoglobin concentration? Blood 107(5):1747–1750

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Dallman P, Siimes MA, Stekel A (1980) Iron deficiency in infancy and childhood. Am J Clin Nutr 33(1):86–118

    Article  CAS  PubMed  Google Scholar 

  19. Holick MF, Chen TC (2008) Vitamin D deficiency: a worldwide problem with health consequences. Am J Clin Nutr 87(4):1080S–1086S

    Article  CAS  PubMed  Google Scholar 

  20. Heaney RP, Davies KM, Chen TC, Holick MF, Barger-Lux MJ (2003) Human serum 25-hydroxycholecalciferol response to extended oral dosing with cholecalciferol. Am J Clin Nutr 77(1):204–210

    Article  CAS  PubMed  Google Scholar 

  21. Moghaddam MHB, Aghdam FB, Jafarabadi MA, Allahverdipour H, Nikookheslat SD, Safarpour S (2012) The Iranian version of International Physical Activity Questionnaire (IPAQ) in Iran: content and construct validity, factor structure, internal consistency and stability. World Appl Sci 18(8):1073–1080

    Google Scholar 

  22. Nikooyeh B, Abdollahi Z, Hajifaraji M, Alavi-Majd H, Salehi F, Yarparvar AH, Neyestani TR (2016) Vitamin D status, latitude and their associations with some health parameters in children: national food and nutrition surveillance. J Trop Pediatr:fmw057

  23. Abioye AI, Aboud S, Premji Z, Etheredge AJ, Gunaratna NS, Sudfeld CR, Mongi R, Meloney L, Darling AM, Noor RA (2016) Iron supplementation affects hematologic biomarker concentrations and pregnancy outcomes among iron-deficient Tanzanian women. The Journal of nutrition:jn225482

  24. Mielgo-Ayuso J, Zourdos MC, Calleja-Gonzalez J, Urdampilleta A, Ostojic S (2015) Iron supplementation prevents a decline in iron stores and enhances strength performance in elite female volleyball players during the competitive season. Appl Physiol Nutr Metab 40(6):615–622. https://doi.org/10.1139/apnm-2014-0500

    Article  CAS  PubMed  Google Scholar 

  25. Hennigar SR, Gaffney-Stomberg E, Lutz LJ, Cable SJ, Pasiakos SM, Young AJ, McClung JP (2016) Consumption of a calcium and vitamin D-fortified food product does not affect iron status during initial military training: a randomised, double-blind, placebo-controlled trial. Br J Nutr 115(4):637–643

    Article  CAS  PubMed  Google Scholar 

  26. Harvey LJ, Armah CN, Dainty JR, Foxall RJ, Lewis DJ, Langford NJ, Fairweather-Tait SJ (2005) Impact of menstrual blood loss and diet on iron deficiency among women in the UK. Br J Nutr 94(4):557–564

    Article  CAS  PubMed  Google Scholar 

  27. Camaschella C (2015) Iron-deficiency anemia. N Engl J Med 372(19):1832–1843

    Article  PubMed  Google Scholar 

  28. Feldman D, Pike JW, Adams JS (2011) Vitamin D

  29. Wamberg L, Pedersen SB, Richelsen B, Rejnmark L (2013) The effect of high-dose vitamin D supplementation on calciotropic hormones and bone mineral density in obese subjects with low levels of circulating 25-hydroxyvitamin d: results from a randomized controlled study. Calcif Tissue Int 93(1):69–77. https://doi.org/10.1007/s00223-013-9729-3

    Article  CAS  PubMed  Google Scholar 

  30. Nahas-Neto J, Cangussu L, Orsatti C, Bueloni-Dias F, Poloni P, Schmitt E, Nahas E (2018) Effect of isolated vitamin D supplementation on bone turnover markers in younger postmenopausal women: a randomized, double-blind, placebo-controlled trial. Osteoporos Int 29(5):1125–1133

    Article  CAS  PubMed  Google Scholar 

  31. Lerchbaum E, Trummer C, Theiler-Schwetz V, Kollmann M, Wölfler M, Pilz S, Obermayer-Pietsch B (2019) Effects of vitamin D supplementation on bone turnover and bone mineral density in healthy men: a post-hoc analysis of a randomized controlled trial. Nutrients 11(4):731

    Article  CAS  PubMed Central  Google Scholar 

  32. Callegari ET, Garland SM, Gorelik A, Chiang CY, Wark JD (2018) Bone turnover marker determinants in young women: results from the Safe-D study. Ann Clin Biochem 55(3):328–340

    Article  PubMed  Google Scholar 

  33. Blanco-Rojo R, Perez-Granados AM, Toxqui L, Zazo P, de la Piedra C, Vaquero MP (2013) Relationship between vitamin D deficiency, bone remodelling and iron status in iron-deficient young women consuming an iron-fortified food. Eur J Nutr 52(2):695–703. https://doi.org/10.1007/s00394-012-0375-8

    Article  CAS  PubMed  Google Scholar 

  34. Diaz-Castro J, Lopez-Frias MR, Campos MS, Lopez-Frias M, Alferez MJ, Nestares T, Ojeda ML, Lopez-Aliaga I (2012) Severe nutritional iron-deficiency anaemia has a negative effect on some bone turnover biomarkers in rats. Eur J Nutr 51(2):241–247. https://doi.org/10.1007/s00394-011-0212-5

    Article  CAS  PubMed  Google Scholar 

  35. Toxqui L, Perez-Granados AM, Blanco-Rojo R, Wright I, de la Piedra C, Vaquero MP (2014) Low iron status as a factor of increased bone resorption and effects of an iron and vitamin D-fortified skimmed milk on bone remodelling in young Spanish women. Eur J Nutr 53(2):441–448. https://doi.org/10.1007/s00394-013-0544-4

    Article  CAS  PubMed  Google Scholar 

  36. Fuzi SFA, Mushtaq S (2019) Vitamin D 3 supplementation for 8 weeks leads to improved haematological status following the consumption of an iron-fortified breakfast cereal: a double-blind randomised controlled trial in iron-deficient women. Br J Nutr 121(10):1146–1157

    Article  CAS  Google Scholar 

  37. Holick MF (2010) Vitamin D : physiology, molecular biology, and clinical applications. Nutrition and health, vol 7659, 2nd edn. Humana Press, New York

  38. Demiaux B, Arlot ME, Chapuy MC, Meunier PJ, Delmas PD (1992) Serum osteocalcin is increased in patients with osteomalacia: correlations with biochemical and histomorphometric findings. J Clin Endocrinol Metab 74(5):1146–1151. https://doi.org/10.1210/jcem.74.5.1569162

    Article  CAS  PubMed  Google Scholar 

  39. Moe SM (2008) Disorders involving calcium, phosphorus, and magnesium. Prim Care 35(2):215–237

    Article  PubMed  PubMed Central  Google Scholar 

  40. Jorde R, Stunes AK, Kubiak J, Joakimsen R, Grimnes G, Thorsby PM, Syversen U (2019) Effects of vitamin D supplementation on bone turnover markers and other bone-related substances in subjects with vitamin D deficiency. Bone 124:7–13

    Article  CAS  PubMed  Google Scholar 

  41. Vasikaran S, Eastell R, Bruyère O, Foldes A, Garnero P, Griesmacher A, McClung M, Morris H, Silverman S, Trenti T (2011) Markers of bone turnover for the prediction of fracture risk and monitoring of osteoporosis treatment: a need for international reference standards. Osteoporos Int 22(2):391–420

    Article  CAS  PubMed  Google Scholar 

  42. Van den Berghe G, Van Roosbroeck D, Vanhove P, Wouters PJ, De Pourcq L, Bouillon R (2003) Bone turnover in prolonged critical illness: effect of vitamin D. J Clin Endocrinol Metab 88(10):4623–4632

    Article  PubMed  CAS  Google Scholar 

  43. Forouhi N, Menon R, Sharp S, Mannan N, Timms P, Martineau A, Rickard A, Boucher B, Chowdhury T, Griffiths C (2016) Effects of vitamin D2 or D3 supplementation on glycaemic control and cardiometabolic risk among people at risk of type 2 diabetes: results of a randomized double-blind placebo-controlled trial. Diabetes, Obesity and Metabolism

  44. Zheng S, Wang B, Han W, Zhu Z, Wang X, Jin X, Antony B, Cicuttini F, Wluka A, Winzenberg T, Aitken D, Blizzard L, Jones G, Ding C (2018) Vitamin D supplementation and inflammatory and metabolic biomarkers in patients with knee osteoarthritis: post hoc analysis of a randomised controlled trial. Br J Nutr 120(1):41–48. https://doi.org/10.1017/s0007114518001174

    Article  CAS  PubMed  Google Scholar 

  45. Yu Y, Tian L, Xiao Y, Huang G, Zhang M (2018) Effect of vitamin D supplementation on some inflammatory biomarkers in type 2 diabetes mellitus subjects: a systematic review and meta-analysis of randomized controlled trials. Ann Nutr Metab 73:62–73

    Article  CAS  PubMed  Google Scholar 

  46. Chen N, Wan Z, Han S-F, Li B-Y, Zhang Z-L, Qin L-Q (2014) Effect of vitamin D supplementation on the level of circulating high-sensitivity C-reactive protein: a meta-analysis of randomized controlled trials. Nutrients 6(6):2206–2216

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Barker T, Rogers VE, Levy M, Templeton J, Goldfine H, Schneider ED, Dixon BM, Henriksen VT, Weaver LK (2015) Supplemental vitamin D increases serum cytokines in those with initially low 25-hydroxyvitamin D: a randomized, double blind, placebo-controlled study. Cytokine 71(2):132–138

    Article  CAS  PubMed  Google Scholar 

  48. Al-Jurayyan NAM, Al Jurayyan ANA, Al Omran HIO, Al Jurayyan RNA, Al Jurayyan ANA, Babiker AMI (2015) Alkaline phosphatase (ALP) activity as a marker for vitamin D deficiency. American Journal of Research Communication 3(5):1–9

  49. Wiseman H (1993) Vitamin D is a membrane antioxidant ability to inhibit iron-dependent lipid peroxidation in liposomes compared to cholesterol, ergosterol and tamoxifen and relevance to anticancer action. FEBS Lett 326(1-3):285–288

    Article  CAS  PubMed  Google Scholar 

  50. Cavalcante IG, Silva AS, Costa MJ, Persuhn DC, Issa CI, Freire TL, Goncalves MD (2015) Effect of vitamin D3 supplementation and influence of BsmI polymorphism of the VDR gene of the inflammatory profile and oxidative stress in elderly women with vitamin D insufficiency: vitamin D3 megadose reduces inflammatory markers. Exp Gerontol 66:10–16. https://doi.org/10.1016/j.exger.2015.03.011

    Article  CAS  Google Scholar 

  51. Shab-Bidar S, Neyestani TR, Djazayery A (2015) The interactive effect of improvement of vitamin D status and VDR FokI variants on oxidative stress in type 2 diabetic subjects: a randomized controlled trial. Eur J Clin Nutr 69(2):216–222. https://doi.org/10.1038/ejcn.2014.240

    Article  CAS  PubMed  Google Scholar 

  52. Pittas AG, Lau J, Hu FB, Dawson-Hughes B (2007) The role of vitamin D and calcium in type 2 diabetes. A systematic review and meta-analysis. J Clin Endocrinol Metab 92(6):2017–2029

    Article  CAS  PubMed  Google Scholar 

  53. Christakos S, Hewison M, Gardner DG, Wagner CL, Sergeev IN, Rutten E, Pittas AG, Boland R, Ferrucci L, Bikle DD (2013) Vitamin D: beyond bone. Ann N Y Acad Sci 1287(1):45–58

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. George P, Pearson E, Witham M (2012) Effect of vitamin D supplementation on glycaemic control and insulin resistance: a systematic review and meta-analysis. Diabet Med 29(8):e142–e150

    Article  CAS  PubMed  Google Scholar 

  55. Wang Y, Yang S, Zhou Q, Zhang H, Yi B (2019) Effects of vitamin D supplementation on renal function, inflammation and glycemic control in patients with diabetic nephropathy: a systematic review and meta-analysis. Kidney Blood Press Res 44(1):72–87

    Article  CAS  PubMed  Google Scholar 

  56. Kaviani M, Abdollahian M, Almasi V, Amini M, Yamini AA (2012) Effects of vitamin D on insulin resistance in nursing home residents: an interventional study. Endokrynol Pol 63(3):191–195

    CAS  PubMed  Google Scholar 

  57. Li H-w, 李康泓 (2015) The role of vitamin D in type 2 diabetes risk: a retrospective study. HKU Theses Online (HKUTO)

  58. Pittas AG, Chung M, Trikalinos T, Mitri J, Brendel M, Patel K, Lichtenstein AH, Lau J, Balk EM (2010) Systematic review: vitamin D and cardiometabolic outcomes. Ann Intern Med 152(5):307–314

    Article  PubMed  PubMed Central  Google Scholar 

  59. Giovannucci E, Liu Y, Hollis BW, Rimm EB (2008) 25-hydroxyvitamin D and risk of myocardial infarction in men: a prospective study. Arch Intern Med 168(11):1174–1180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Delvin EE, Lambert M, Levy E, O'loughlin J, Mark S, Gray-Donald K, Paradis G (2010) Vitamin D status is modestly associated with glycemia and indicators of lipid metabolism in French-Canadian children and adolescents. J Nutr 140(5):987–991

    Article  CAS  PubMed  Google Scholar 

  61. Ponda MP, Dowd K, Finkielstein D, Holt PR, Breslow JL (2012) The short-term effects of vitamin D repletion on cholesterol. Arterioscler Thromb Vasc Biol 32(10):2510–2515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Tønnesen R, Hovind PH, Jensen LT, Schwarz P (2016) Determinants of vitamin D status in young adults: influence of lifestyle, sociodemographic and anthropometric factors. BMC Public Health 16(1):385

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Shidfar F, Amani S, Vafa M, Shekarriz R, Hosseini S, Shidfar S, Eshraghian M, Mousavi SN (2016) Effects of iron supplementation with and without docosahexaenoic acid on the cardiovascular disease risk based on paraoxonase-1, hs-CRP, and ApoB/ApoA-I Ratio in women with iron deficiency anemia. Biol Trace Elem Res 169(1):34–40

    Article  CAS  PubMed  Google Scholar 

  64. Dhur A, Galan P, Hercberg S (1989) Effects of different degrees of iron deficiency on cytochrome P450 complex and pentose phosphate pathway dehydrogenases in the rat. J Nutr 119(1):40–47. https://doi.org/10.1093/jn/119.1.40

  65. Katsumata S, Katsumata R, Matsumoto N, Inoue H, Takahashi N, Uehara M (2016) Iron deficiency decreases renal 25-hydroxyvitamin D 3-1α-hydroxylase activity and bone formation in rats. BMC Nutrition 2(1):33

    Article  Google Scholar 

Download references

Acknowledgments

We thank the participants for their cooperation and participation in this study.

Funding

This work was financially supported by the Vice Chancellor of Research, Iran University of Medical Sciences.

Author information

Authors and Affiliations

Authors

Contributions

FA-Z and MV designed this study. BA, FA-Z, and HS participated in the conduct of the study. MS and FZ analyzed the data. BA, FA-Z, MS, and HS drafted the manuscript. MV and SMK critically revised the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Mohammadreza Vafa.

Ethics declarations

Ethics Approval and Consent to Participate

Written informed consent was obtained from all participants on recruitment. The protocol of this study was approved by the Medical Ethics Committee of Iran University of Medical Sciences, is in conformity with the Declaration of Helsinki (approval number: IR.IUMS.REC.1394.25971), and was registered at the Iranian Registry of Clinical Trials (IRCT registration number: IRCT201409082365N9) which is available at: http://irct.ir/user/trial/20288/view.

Consent for Publication

All authors have given consent for the paper to be published by the corresponding author.

Competing Interests

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abiri, B., Vafa, M., Azizi-Soleiman, F. et al. Changes in Bone Turnover, Inflammatory, Oxidative Stress, and Metabolic Markers in Women Consuming Iron plus Vitamin D Supplements: a Randomized Clinical Trial. Biol Trace Elem Res 199, 2590–2601 (2021). https://doi.org/10.1007/s12011-020-02400-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-020-02400-8

Keywords

Navigation