Skip to main content
Log in

Kanchan arsenic filters in the lowlands of Nepal: mode of operation, arsenic removal, and future improvements

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

In the lowlands of Nepal (Terai), the WHO drinking water guideline concentration of 10 μg/L for arsenic (As) is frequently exceeded. Since their introduction in 2006, iron-assisted bio-sand filters (Kanchan filters) are widely used to treat well water in Nepal. The filters are constructed on the basis of As-removal with corroding zero-valent iron (ZVI), with water flowing through a filter bed of iron nails placed above a sand filter. According to several studies, the performance of Kanchan filters varies greatly and depends on the size of the iron nails, filter design, water composition, and operating conditions, leading to concerns about their actual efficiency. This study examined 38 Kanchan household filters for which insufficient As-removal was reported, to evaluate the reasons for limited removal efficiency and to define measures for improved performance. The measured arsenic removal ranged from 6.3% to 98.5%. The most relevant factors were the concentrations of As and Fe in the raw water, with the best removal efficiency observed for water with low As (123 µg/L) and high Fe (5.0 mg/L). Although the concentrations of other elements, pH, flow rates, and contact time with ZVI also played a role, the combined evidence indicated that the reactivity of the frequently drying nail beds between filtrations was insufficient for efficient As-removal. Optimized filters with added top layers of sand and raised water outlets with flow restrictions to keep nails permanently immersed and to increase contact times, should be able to achieve higher and more consistent arsenic removal efficiencies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Source: Ngai et al. (2005)

Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ahmed, F., Bibi, M. H., Ishiga, H., Fukushima, T., & Maruoka, T. (2010). Geochemical study of arsenic and other trace elements in groundwater and sediments of the Old Brahmaputra river plain, Bangladesh. Environmental Earth Sciences, 60(6), 1303–1316. https://doi.org/10.1007/s12665-009-0270-7.

    Article  CAS  Google Scholar 

  • Berg, M., Luzi, S., Trang, P. T. K., Viet, P. H., Giger, W., & Stüben, D. (2006). Arsenic removal from groundwater by household sand filters: Comparative field study, model calculations, and health benefits. Environmental Science and Technology, 40(17), 5567–5573. https://doi.org/10.1021/es060144z.

    Article  CAS  Google Scholar 

  • Berg, M., Trang, P. T. K., Stengel, C., Buschmann, J., Viet, P. H., Van Dan, N., et al. (2008). Hydrological and sedimentary controls leading to arsenic contamination of groundwater in the Hanoi area, Vietnam: The impact of iron-arsenic ratios, peat, river bank deposits, and excessive groundwater abstraction. Chemical Geology, 249(1–2), 91–112. https://doi.org/10.1016/j.chemgeo.2007.12.007.

    Article  CAS  Google Scholar 

  • Bhattacharya, P., Tandukar, N., Neku, A., Valero, A. A., Mukherjee, A. B., & Jacks, G. 107 (2003). Geogenic arsenic in groundwaters from Terai Alluvial Plain of Nepal' I XII International Conference on Heavy Metals in the Environment [Conference Paper]. Grenoble: EDP Sciences, Journal De Physique, 107(I), 173–176. https://www.scopus.com/inward/record.uri?eid=2-s2.0-0038039247&doi=10.1051%2fjp4%3a20030270&partnerID=40&md5=e882b51f7f34bd78c1ca4f8023efc8db (Accessed: 26 May 2003 through 30 May 2003).

  • Bretzler, A., Nikiema, J., Lalanne, F., Hoffmann, L., Biswakarma, J., Siebenaller, L., et al. (2020). Arsenic removal with zero-valent iron filters in Burkina Faso: Field and laboratory insights. Science of the Total Environment. https://doi.org/10.1016/j.scitotenv.2020.139466.

    Article  Google Scholar 

  • Brikowski, T. H., Neku, A., Shrestha, S. D., & Smith, L. S. (2014). Hydrologic control of temporal variability in groundwater arsenic on the Ganges floodplain of Nepal. Journal of Hydrology, 518(PC), 342–353. https://doi.org/10.1016/j.jhydrol.2013.09.021.

    Article  CAS  Google Scholar 

  • Brikowski, T. H., Smith, L. S., Shei, T. C., & Shrestha, S. D. (2004). Correlation of electrical resistivity and groundwater arsenic concentration, Nawalparasi, Nepal. Nepal Geological Society, 30, 99–106.

    Google Scholar 

  • Caré, S., Crane, R., Calabrò, P. S., Ghauch, A., Temgoua, E., & Noubactep, C. (2013). Modeling the permeability loss of metallic iron water filtration systems. Clean—Soil, Air, Water, 41(3), 275–282. https://doi.org/10.1002/clen.201200167.

    Article  CAS  Google Scholar 

  • Chiew, H., Sampson, M. L., Huch, S., Ken, S., & Bostick, B. C. (2009). Effect of groundwater iron and phosphate on the efficacy of arsenic removal by iron-amended bios and filters. Environmental Science and Technology, 43(16), 6295–6300. https://doi.org/10.1021/es803444t.

    Article  CAS  Google Scholar 

  • Coker, V. S., Gault, A. G., Pearce, C. I., Van Der Laan, G., Telling, N. D., Charnock, J. M., et al. (2006). XAS and XMCD evidence for species-dependent partitioning of arsenic during microbial reduction of ferrihydrite to magnetite. Environmental Science and Technology, 40(24), 7745–7750. https://doi.org/10.1021/es060990+.

    Article  CAS  Google Scholar 

  • Diwakar, J., Johnston, S. G., Burton, E. D., & Shrestha, S. D. (2015). Arsenic mobilization in an alluvial aquifer of the Terai region, Nepal. Journal of Hydrology: Regional Studies, 4, 59–79. https://doi.org/10.1016/j.ejrh.2014.10.001.

    Article  Google Scholar 

  • Dixit, S., & Hering, J. G. (2003). Comparison of arsenic(V) and arsenic(III) sorption onto iron oxide minerals: Implications for arsenic mobility. Environmental Science and Technology, 37(18), 4182–4189. https://doi.org/10.1021/es030309t.

    Article  CAS  Google Scholar 

  • Emerman, S. H., Prasai, T., Anderson, R. B., & Palmer, M. A. (2010). Arsenic contamination of groundwater in the Kathmandu Valley, Nepal, as a consequence of rapid erosion. Journal of Nepal Geological Society, 40, 49–60. https://doi.org/10.3126/jngs.v40i0.23595.

    Article  Google Scholar 

  • Farrell, J., Wang, J. P., O'Day, P., & Conklin, M. (2001). Electrochemical and spectroscopic study of arsenate removal from water using zero-valent iron media. Environmental Science and Technology, 35(10), 2026–2032. https://doi.org/10.1021/es0016710.

    Article  CAS  Google Scholar 

  • Guillot, S., Garçon, M., Weinman, B., Gajurel, A., Tisserand, D., France-Lanord, C., et al. (2015). Origin of arsenic in Late Pleistocene to Holocene sediments in the Nawalparasi district (Terai, Nepal). Environmental Earth Sciences, 74(3), 2571–2593. https://doi.org/10.1007/s12665-015-4277-y.

    Article  CAS  Google Scholar 

  • Gurung, J. K., Ishiga, H., & Khadka, M. S. (2005). Geological and geochemical examination of arsenic contamination in groundwater in the Holocene Terai Basin, Nepal. Environmental Geology, 49(1), 98–113. https://doi.org/10.1007/s00254-005-0063-6.

    Article  CAS  Google Scholar 

  • Hug, S. J., Leupin, O. X., & Berg, M. (2008). Bangladesh and Vietnam: Different groundwater compositions require different approaches to arsenic mitigation (Review). Environmental Science and Technology, 42(17), 6318–6323. https://doi.org/10.1021/es7028284.

    Article  CAS  Google Scholar 

  • Hussam, A., & Munir, A. K. M. (2007). A simple and effective arsenic filter based on composite iron matrix: Development and deployment studies for groundwater of Bangladesh. Journal of Environmental Science and Health—Part A Toxic/Hazardous Substances and Environmental Engineering, 42(12), 1869–1878. https://doi.org/10.1080/10934520701567122.

    Article  CAS  Google Scholar 

  • Katsoyiannis, I. A., Ruettimann, T., & Hug, S. J. (2008). pH dependence of fenton reagent generation and As(III) oxidation and removal by corrosion of zero valent iron in aerated water. Environmental Science and Technology, 42(19), 7424–7430. https://doi.org/10.1021/es800649p.

    Article  CAS  Google Scholar 

  • Meng, X., Korfiatis, G. P., Bang, S., & Bang, K. W. (2002). Combined effects of anions on arsenic removal by iron hydroxides. Toxicology Letters, 133(1), 103–111. https://doi.org/10.1016/S0378-4274(02)00080-2.

    Article  CAS  Google Scholar 

  • Mueller, B. (2017). Arsenic in groundwater in the southern lowlands of Nepal and its mitigation options: A review (Review). Environmental Reviews, 25(3), 296–305. https://doi.org/10.1139/er-2016-0068.

    Article  CAS  Google Scholar 

  • Mueller, B., & Hug, S. J. (2018). Climatic variations and de-coupling between arsenic and iron in arsenic contaminated ground water in the lowlands of Nepal. Chemosphere, 210, 347–358. https://doi.org/10.1016/j.chemosphere.2018.07.024.

    Article  CAS  Google Scholar 

  • NASC-NRCS., (2011). The state of arsenic in Nepal—2011. Kathmandu, Nepal: Nepal Arsenic Steering Committee/ Nepal Red Cross Society.

    Google Scholar 

  • Neku, A., & Tandukar, N. 107 (2003) 'An overview of arsenic contamination in groundwater of Nepal and its removal at household level' II XII International Conference on Heavy Metals in the Environment [Conference Paper]. Grenoble: EDP Sciences, pp. 941–944. (Accessed: 26 May 2003 through 30 May 2003).

  • Neumann, A., Kaegi, R., Voegelin, A., Hussam, A., Munir, A. K. M., & Hug, S. J. (2013). Arsenic removal with composite iron matrix filters in Bangladesh: A field and laboratory study. Environmental Science and Technology, 47(9), 4544–4554. https://doi.org/10.1021/es305176x.

    Article  CAS  Google Scholar 

  • Ngai TKK, Dangol B, Murcott S, Shrestha RR. 2005 Kanchan Arsenic Filter. Massachusetts Institute of Technology (MIT) and Environment and Public Health Organization (ENPHO). Kathmandu, Nepal. Booklet published by: Environment and Public Health Organization (ENPHO).

  • Ngai, T. K. K., Murcott, S. E., Shrestha, R. R., Dangol, B., & Maharjan, M. (2006). Development and dissemination of Kanchan™ Arsenic Filter in rural Nepal. Water Supply, 6(3), 137–146. https://doi.org/10.2166/ws.2006.807.

    Article  Google Scholar 

  • Ngai, T. K., Shrestha, R. R., Dangol, B., Maharjan, M., & Murcott, S. E. (2007). Design for sustainable development–household drinking water filter for arsenic and pathogen treatment in Nepal. Journal of Environmental Science and Health. Part A, Toxic/hazardous Substances & Environmental Engineering, 42(12), 1879–1888. https://doi.org/10.1080/10934520701567148.

    Article  CAS  Google Scholar 

  • Ngai, T. K. K., & Walewijk, S. (2003). The arsenic bio sand filter (ABF) project : design of an appropriate household drinking water filter for rural Nepal. Kathmandu, Nepal: Report Prepared for RWSSSP and ENPHO.

    Google Scholar 

  • Nickson, R. T., McArthur, J. M., Ravenscroft, P., Burgess, W. G., & Ahmed, K. M. (2000). Mechanism of arsenic release to groundwater, Bangladesh and West Bengal. Applied Geochemistry, 15(4), 403–413. https://doi.org/10.1016/S0883-2927(99)00086-4.

    Article  CAS  Google Scholar 

  • Noubactep, C., Caré, S., Togue-Kamga, F., Schöner, A., & Woafo, P. (2010). Extending Service Life of Household Water Filters by Mixing Metallic Iron with Sand. Clean—Soil, Air, Water, 38(10), 951–959. https://doi.org/10.1002/clen.201000177.

    Article  CAS  Google Scholar 

  • Noubactep, C. (2018). Metallic iron (Fe0) provide possible solution to universal safe drinking water provision. Water Technol Treatment Methods, 1, 102–110. https://doi.org/10.31021/jwtj.20181102.

    Article  Google Scholar 

  • NRCS–ENPHO. (2003). An overview of arsenic contamination and its mitigation in Nepal Red Cross Society Program Areas (Jhapa, Sarlahi, Saptari, Bara, Parsa, Rautahat, Nawalparasi, Rupandehi, Kapilvastu, Banke and Bardiya) Drinking Water Quality Improvement Program. Kathmandu, Nepal: Nepal Red Cross Society/ Japanese Red Cross Society/ ENPHO.

    Google Scholar 

  • Ogata, R., Dangol, B., & Sakamoto, M. (2020). Sustainability assessment of long-term, widely used household Kanchan Arsenic Filters in Nepal. Journal of Environmental Science and Health—Part A Toxic/Hazardous Substances and Environmental Engineering, 55(5), 517–527. https://doi.org/10.1080/10934529.2019.1710414.

    Article  CAS  Google Scholar 

  • Rahman, M. M., Dong, Z., & Naidu, R. (2015). Concentrations of arsenic and other elements in groundwater of Bangladesh and West Bengal, India: Potential cancer risk. Chemosphere, 139, 54–64. https://doi.org/10.1016/j.chemosphere.2015.05.051.

    Article  CAS  Google Scholar 

  • Ramakrishna, D. M., Viraraghaven, T., & Jin, Y. C. (2006). Iron oxide coated sand for arsenic removal: Investigation of coating parameters using factorial design approach. Practice Periodical of Hazardous, Toxic, and Radioactive Waste Management, 10(4), 198–206. https://doi.org/10.1061/(ASCE)1090-025X(2006)10:4(198).

    Article  CAS  Google Scholar 

  • Roberts, L. C., Hug, S. J., Ruettimann, T., Billah, M., Khan, A. W., & Rahman, M. T. (2004). Arsenic removal with Iron(II) and Iron(III) in waters with high silicate and phosphate concentrations. Environmental Science and Technology, 38(1), 307–315. https://doi.org/10.1021/es0343205.

    Article  CAS  Google Scholar 

  • Senn, A. C., Hug, S. J., Kaegi, R., Hering, J. G., & Voegelin, A. (2018). Arsenate co-precipitation with Fe(II) oxidation products and retention or release during precipitate aging. Water Research, 131, 334–345. https://doi.org/10.1016/j.watres.2017.12.038.

    Article  CAS  Google Scholar 

  • Shah, B. A. (2008). Role of Quaternary stratigraphy on arsenic-contaminated groundwater from parts of Middle Ganga Plain, UP–Bihar, India. Environmental Geology, 53, 1553–1561. https://doi.org/10.1007/s00254-007-0766-y.

    Article  CAS  Google Scholar 

  • Sharma, C.K. 1995. Shallow (phreatic) aquifers of Nepal. Sangeeta Publishing Kathmandu, Nepal, 1st edn. 272 pp.

  • Sharma, R. M. (1999). Research study on possible contamination of groundwater with arsenic in Jhapa, Morang, and Sunsari districts of Eastern Terai of Nepal. DWSS Government of Nepal: Report of WHO Project.

    Google Scholar 

  • Shrestha, S. D., Brikowski, T., Smith, L., & Shei, T. C. (2004). Grain size constraints on arsenic concentration in shallow wells of Nawalparasi, Nepal. Journal of Nepal Geological Society, 30, 93–98.

    Google Scholar 

  • Shrestha, B. R., Whitney, J. W., & Shrestha, K. B. (2004). The state of arsenic in Nepal 2003. Kathmandu: The National Arsenic Steering Committee and Environment and Public Health Organization.

    Google Scholar 

  • Singh, A., Smith, L. S., Shrestha, S., & Maden, N. (2014). Efficacy of arsenic filtration by Kanchan Arsenic Filter in Nepal. Journal of Water and Health, 12(3), 596–599. https://doi.org/10.2166/wh.2014.148.

    Article  Google Scholar 

  • Śmiech, K. M., Tolsma, A., Kovács, T., Dalbosco, V., Yasadi, K., Groendijk, L., et al. (2018). Comparing mixed-media and conventional slow-sand filters for arsenic removal from groundwater. Water (Switzerland). https://doi.org/10.3390/w10020119.

    Article  Google Scholar 

  • Smith, K., Li, Z., Chen, B., Liang, H., Zhang, X., Xu, R., et al. (2017). Comparison of sand-based water filters for point-of-use arsenic removal in China. Chemosphere, 168, 155–162. https://doi.org/10.1016/j.chemosphere.2016.10.021.

    Article  CAS  Google Scholar 

  • Thakur, J. K., Thakur, K. R., Ramanathan, A., Kumar, M., & Singh, S. K. (2011). Arsenic contamination of groundwater in Nepal—an overview. Water, 3, 1–20. https://doi.org/10.3390/w3010001.

    Article  CAS  Google Scholar 

  • Tyrovola, K., Nikolaidis, N. P., Veranis, N., Kallithrakas-Kontos, N., & Koulouridakis, P. E. (2006). Arsenic removal from geothermal waters with zero-valent iron-effect of temperature, phosphate and nitrate. Water Research, 40(12), 2375–2386. https://doi.org/10.1016/j.watres.2006.04.006.

    Article  CAS  Google Scholar 

  • van Geen, A., Radloff, K., Aziz, Z., Cheng, Z., Huq, M. R., Ahmed, K. M., et al. (2008). Comparison of arsenic concentrations in simultaneously-collected groundwater and aquifer particles from Bangladesh, India, Vietnam, and Nepal. Applied Geochemistry, 23(11), 3244–3251. https://doi.org/10.1016/j.apgeochem.2008.07.005.

    Article  CAS  Google Scholar 

  • Wenk, C. B., Kaegi, R., & Hug, S. J. (2014). Factors affecting arsenic and uranium removal with zero-valent iron: Laboratory tests with Kanchan-type iron nail filter columns with different groundwaters. Environmental Chemistry, 11(5), 547–557. https://doi.org/10.1071/EN14020.

    Article  CAS  Google Scholar 

  • Yadav, I. C., Dhuldhaj, U. P., Mohan, D., & Singh, S. (2011). Current status of groundwater arsenic and its impacts on health and mitigation measures in the Terai basin of Nepal: An overview (Review). Environmental Reviews, 19(1), 55–67. https://doi.org/10.1139/A11-002.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Thanks are expressed to Candice Young-Rojanschi, Finn Macdonald, and Laura MacDonald from CAWST, Calgary, Canada; Hari Boudhatoki ENPHO, Kathmandu, Nepal; Gyan Prakash Yadav, Parasi, Nepal, and Som Rai, my loyal expedition and trekking guide in Nepal and responsible for all logistics over many years. We also thank Thomas Ruettimann, Eawag, for analysis of the samples by ICP-MS. This research was supported by various private foundations from Switzerland.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barbara Mueller.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 5982 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mueller, B., Dangol, B., Ngai, T.K.K. et al. Kanchan arsenic filters in the lowlands of Nepal: mode of operation, arsenic removal, and future improvements. Environ Geochem Health 43, 375–389 (2021). https://doi.org/10.1007/s10653-020-00718-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-020-00718-9

Keywords

Navigation